3.2.4 反欺诈策略层
反欺诈业务层建模,首先得有策略。在反欺诈策略的基础上,我们可以通过人工智能、大数据、机器学习和区块链等数字技术,建立实时数据采集、实时数据处理和实时欺诈发现的数字化反欺诈平台,如图3-15所示。
图3-15 数字化反欺诈平台
常见的反欺诈策略有OCR识别、用户信息校验、命中黑名单、命中多头借贷、手机号校验、运营商认证、银行卡实名认证、人脸识别、活体验证、三方数据比对、设备信息检测、关系图谱分析、用户行为数据等。
以供应链融资的设备埋点反欺诈为例,客户完成授信后,我们从设备信息验证和设备指纹识别中,提取符合反欺诈特征标签的数据,进一步搭建反欺诈模型。结合历史放贷样本,我们可使用Lightgbm和XGBoost框架进行机器学习和深度学习,从而得到欺诈评分或欺诈规则,确保数据符合准入策略、认证策略和支用策略,以便实时输出判定结果,识别金融反欺诈风险。
在供应链金融业务中,反欺诈模型起着很重要的作用。从关系图谱上,我们能够了解关联企业的经营关系;从客户画像上,能够识别恶意客户与行为数据;从数据挖掘上,能够判断企业真实的经营状况。
供应链金融的发展趋势必然是数字化。我们可通过提升产业金融的数字化基础,加速供应链金融企业的数字化进程。数字化供应链金融的反欺诈就是通过数字技术和决策引擎来提升供应链上的风险识别能力,从而有效地改善核心企业现金流,降低资产负债率,增加上下游客户黏性。