2.5 光在分层介质中的传播[2],[21~26]
在光学系统中,为了消除光学元件表面对入射光的反射作用,或增强某元件对一定波长范围的入射光的反射率或透射率,经常在元件表面制备多层介质薄膜。因此分析光波在分层介质中的传播特性具有实用价值。
2.5.1 多层膜的特征矩阵
光在多层膜中传播时,经各界面的反射和折射,在多层膜中存在正向传播的光和反向传播的光。根据麦克斯韦电磁理论,光场在界面处各点两侧产生的总电场强度的切向分量和总磁场强度的切向分量分别相等。这一点是讨论光在多层介质中传播特性的基本出发点。
1.有效光学导纳
当光波入射到界面时,电场强度与磁场强度的切向分量平行于界面,为讨论方便起见,下面引入有效光学导纳。对于正向传播的光波,有效光学导纳定义为磁场强度的切向分量与电场强度的切向分量之比,即
式中,上标“+”表示正向传播的光波。对于s光,电场平行于界面,因此
磁场强度的切向分量为
式中,θ0为入射角。对于介质,,μ=μ0μr≈μ0,ε=ε0εr=ε0n2,于是有
对于p光,电场强度的切向分量为
磁场强度的切向分量为
因此
对于反向传播的光波,有效光学导纳为
式中,上标“-”表示反向传播的光波。对于正向或反向传播的光波,无论是s光或p光,其电场、磁场与传播方向间都满足右手螺旋关系,假设各垂直分量方向一致,则入射光与反射光的平行分量在界面上投影相反;因此与正向光波的有效光学导纳定义式(2.5-1)相比,反向光波的有效光学导纳定义式(2.5-8)出现一负号。
2.光导纳矩阵和折射矩阵
下面先讨论单层膜情况。如图2.5-1所示,在折射率为n2的透明介质基片的光滑表面上镀一层折射率和厚度都均匀的透明介质薄膜,设薄膜的厚度为h1、折射率为n1。薄膜上表面与空气(折射率为n0)交界,上、下表面以界面1和界面2标记。考虑到麦克斯韦方程中E、H之间的互易性,p光的任何结论均可由s光相应结果经适当置换得到,反之亦然。因此,只需要讨论入射光波的s分量或p分量的情况即可。
下面以s光为例。设一单色平面光波自介质n0(本例即空气)入射到界面1。根据反射和折射定律,入射光波在界面1和界面2上将发生反射和透射。在介质n0中,存在入射光场、 和反射光场、,这里的反射光场并非只是由该界面产生的,而是由整个系统产生的总反射光场;在介质薄膜n1 的上界面内侧,存在透射光场、及来自介质薄膜n1下界面内侧的反射光场、。这里下标“10”表示在折射率为n1的薄膜中靠近折射率为n0的薄膜的界面内侧,依次类推。在介质薄膜n1的下界面内侧,存在入射光场、及反射光场、;在基片n2中,存在透射光场、。各处场量的方向如图2.5-1所示。
图2.5-1 薄膜界面两侧场矢量的边界条件
在界面1处,根据电磁场的边界条件,在界面两侧的E、H切向分量相等,即
这里E0τ、H0τ分别指总电场强度的切向分量和总磁场强度的切向分量。利用上面引入的有效光学导纳,则有
写成矩阵形式为
其中和称为导纳矩阵,一般写为
由式(2.5-9)和式(2.5-10),可得
即
引入折射矩阵W0,1,其定义为
折射矩阵W0,1描述光波电矢量的切向分量从界面一侧传播到另一侧的传播特性。折射矩阵的一般形式为
k表示多层膜体系中的第k个界面。因此在第k个界面处,光波电矢量的变换关系为
3.相位矩阵和传递矩阵
仍然针对s光,在界面2处,有
当不考虑介质的吸收时,应有
说明与、与的振幅大小相等,但由于介质薄膜的厚度使它们之间分别有相位延迟,其相位延迟量为
由图2.5-1可以看出,δ1实际上反映了光波通过薄膜一次引起的相位变化,其大小取决于薄膜厚度h1、折射率n1和折射角θ1。
将式(2.5-19)写成矩阵形式,表示为
令
矩阵U1称为相位矩阵。一般任意层k的相位矩阵可表示为
式中δk为
因此光波通过第k层膜时,该层相对两个界面处的电场强度的变换关系可以表示为
考虑k层多层膜的情况,此时有k+1个界面,对每个界面及每个膜层,重复利用式(2.5-17)、式(2.5-25)进行计算,得到
令
矩阵S称为膜系的传递矩阵,它将光波电矢量的切向分量从膜系的一端传递到另一端。
4.特征矩阵(干涉矩阵)
为了反映电场和磁场两者切向分量在各层膜的传播情况,引入特征矩阵。第k层膜的特征矩阵定义为
即
特征矩阵M将薄膜上、下两界面处的场联系起来,反映光波总电场强度与总磁场强度两者的切向分量从膜系的一端传播到另一端的情况。
设一多层介质膜系共有N层,折射率分别为n1,n2,…,nN,各自的特征矩阵为M1,M2,…MN,则界面1和界面2处的场满足
这里,E1、H1 与E2、H2 分别为界面1处与界面2处电场强度及磁场强度各自的切向分量,下面EN、HN的含义相同。界面2和界面3处的场满足
依次类推,界面N和界面N+1处的场满足
于是,膜系两边即界面1与界面N+1处的场有如下关系
取矩阵M为
式(2.5-34)给出整个膜系的特征矩阵,它等于膜系中各层介质薄膜的特征矩阵的乘积。特征矩阵M与膜系传递矩阵S的关系为
2.5.2 反射率和透射率
1.单层膜的反射率和透射率
当一个平面光波入射到一单层介质膜上时,根据前面的讨论,可以用矩阵形式表示为
根据菲涅耳公式,可得膜系的振幅反射率为
膜系的光强反射率为
当不考虑膜系吸收时,有
需要注意的是,当式(2.5-38)中的δ1换成δ1+π,即当h1换成h1+Δh时,其中
反射率数值不变。也就是说,厚度上差整数倍的那些介质膜,它们的反射率(和透射率)是一样的。下面来确定反射率为极大值或极小值时薄膜的光学厚度。令
则当(m=0,1,2,…)时,有。在此应当区分以下两种情况。
(1)当m为奇数时,cosδ1=0,sinδ1=1,则式(2.5-38)化为
在正入射时,有
(2)当m为偶数时,sinδ1=0,cosδ1=1,式(2.5-38)化为
在正入射时,有
可见在这种情况下,薄膜的反射率与薄膜折射率n1无关,因此光学厚度为(m=1,2,3,…)的薄膜对波长λ0的反射(或透射)光的光强没有影响。
2.多层膜的反射率和透射率
当一平面光波入射到N层介质膜系上时,则膜系第1层与第N层外侧的场满足
由
将式(2.5-46)改写为
由此可得膜系的振幅反射率和振幅透射率分别为
进一步得到膜系的光强反射率为
当不考虑膜系的吸收时,有
于是,只要求出膜系的特征矩阵,并将各矩阵元素代入式(2.5-49)和式(2.5-50),即可求出该多层膜系的振幅反射率r和振幅透射率t,进而求出膜系的光强反射率和光强透射率。
2.5.3 周期性多层介质
在实际应用的薄膜滤光片中,大多具有周期性的膜层结构。对于周期性多层介质膜,其特性的计算和分析可大为简化。通常周期性多层介质膜由一系列折射率高(n1)低(n2)交替相间的均匀膜层构成。高折射率膜层的厚度为h1,低折射率膜层的厚度为h2,如图2.5-2所示。
图2.5-2 周期性多层膜
假设一个周期性多层膜的基本周期中两层膜的特征矩阵分别为M1和M2,则基本周期的特征矩阵为
其中各矩阵元素分别为
设周期为N,则周期性多层膜的特征矩阵为
为了计算MN的各个元素,利用矩阵论的一个结果,即
式中,a=(m11+m22)/2。而uN是第二类契比雪夫(C hebshev)多项式,表示为
于是可以计算出式(2.5-54)中的N个周期性多层膜的矩阵元素为
式中
膜系的振幅反射率为
式中,η0和ηg分别为环境和基片的有效光学导纳。周期性交替膜的光学厚度相同是比较常见的,
即n1h1=n2h2(通常均为λ0/4),在正入射情况下,有
则契比雪夫多项式的a化为
可见a总是小于1,但是对于某些δ值,它可以变成小于-1。对于λ0/4波长膜(n1h1=n2h2=λ0/4),在正入射条件下,中心波长处有,则式(2.5-53)化为
以这种双层膜作为基本周期的多层膜,其特征矩阵为
则光强反射率为