前言

随着技术的不断发展,人工智能和机器学习已经成为计算机领域中的重要分支,并且被广泛应用于工业、农业、商业、医学、艺术等各个领域。为了满足社会对相关人才的需求,急需提高IT技术人员对机器学习原理和算法的理解及应用能力。机器学习是一门多领域交叉学科,可以通过计算机模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构来改善自身性能。机器学习的应用是以大数据采集与处理为前提条件的。

本书内容

本书内容逻辑上分为编程基础、算法应用、项目实战三大部分。编程基础部分主要讲解Python编程基础、数据处理基础、机器学习常用库等内容,并讲解了机器学习分类、典型过程及常见应用。算法应用部分讲解如何建立大数据环境下的机器学习工程化思维,在不必深究算法细节的前提下,实现大数据分类、聚类、回归、协同过滤、关联规则、降维等算法及其应用。最后通过3个综合实战项目(新闻内容分类实战、泰坦尼克号获救预测实战、中药数据分析项目实战),帮助读者对所学技能进行巩固和提升。

本书特点

(1)本书针对每个经典算法基于机器学习典型开发流程展开,每个算法的讲解都采用先理论后应用实战的方法,方便读者从编程中学会机器学习算法及其应用。

(2)本书基于Python语言实现机器学习经典算法,步骤清晰简明,易于上手,重点放在机器学习算法理解和应用上。同时,本书配套了较为丰富的实战案例,并为案例提供了详细的步骤说明。

(3)本书尤其重视实践操作,包括框架搭建和开发环境安装、各种算法经典案例引入、算法原理讲解、综合项目实战提升等,并将实战与理论知识相结合,从而加深对机器学习算法的理解。

(4)本书作者是具有多年大数据分析和处理实战经验的高级工程师,算法讲解通俗易懂,方便读者提高学习效率,快速掌握机器学习技术。

配套资源下载

本书配套示例源代码、PPT课件、教学视频、教学大纲、习题与答案、作者微信答疑,读者需要用微信扫描下面的二维码获取。如果阅读中发现问题或有疑问,请联系booksaga@163.com,邮件主题写“机器学习实战(视频教学版)”。

本书读者

本书适合机器学习初学者,可以作为大数据分析和机器学习算法工程师的参考用书,也可以作为高等院校或高职高专人工智能、大数据等专业的教材或教学参考书。

编者

2024年1月