- 数字赋能:机械企业与工业互联网
- 孙伯淮等主编
- 13字
- 2023-12-06 16:31:57
第二章 信息化与“两化融合”
第一节 信息化
一、信息化硬件发展
硬件覆盖范围很广,从基础元器件到主机系统,有半导体器件、晶体管、逻辑电路、数字电路、集成电路、微处理器、单片机、微机、计算机、服务器、超级计算机。硬件的发展史一般按基本元器件的发展来划分,可分为四个阶段。
第一代基本元器件是电子管(见图2-1)。世界上第一台基于电子管的计算机——电子数字积分器与计算器(Electronic Numerical Integrator and Calculator,ENIAC)于1946年2月15日在美国宾夕法尼亚大学研制成功。ENIAC是为美国陆军进行新式火炮试验所涉及的复杂弹道计算而研制的,占地170平方米,重达30吨,耗电功率约150千瓦,每秒钟可进行5000次运算,这在现在看来微不足道,但在当时却是破天荒的。
图2-1 第一代基本元器件是电子管
第二代基本元器件是晶体管(见图2-2)。1954年,美国贝尔实验室成功研制第一台使用晶体管线路的计算机,取名为“催迪克”(Transistorized Airborne Digital Computer,TRADIC),装有800个晶体管。晶体管不仅能实现电子管的功能,还具有尺寸小、重量轻、寿命长、效率高、发热少、功耗低等优点。使用晶体管后,电子线路的结构大大改观,制造高速电子计算机就更容易实现了。
图2-2 第二代基本元器件是晶体管
第三代是中小规模集成电路(见图2-3)。1958年,美国德州仪器公司(TI)的工程师杰克·基尔比发明了集成电路(Integrated Circuit,IC),而仙童公司的罗伯特·诺伊斯则提出了一种适合工业生产的集成电路理论。因为此项发明,杰克·基尔比于2000年获得了诺贝尔物理学奖。从1965年到1970年,集成电路被应用于计算机,因此这段时期被称为“中小规模集成电路计算机时代”。IBM公司花费50亿美元开发的IBM 360系列成为第三代计算机的代表。
图2-3 第三代是中小规模集成电路
第四代是大规模和超大规模集成电路(见图2-4)。1970年,IBM公司将采用大规模集成电路的大型计算机370系列投放市场。此后诞生了各种各样的微处理器,而个人计算机(PC)的出现将信息技术真正带到了工业领域乃至进入千家万户。新的电子产品如雨后春笋,潮水般涌向市场,这个势头方兴未艾。
图2-4 第四代是大规模和超大规模集成电路
二、工业软件发展
工业软件的发展史是一部模型迭代史。20世纪70年代,人力资源成本高企,企业面临着越来越重的盈利压力。为了降低人力成本,提升生产效率,工业领域信息化需求激增,工业软件也在此期间得以崛起。财力雄厚的军火制造商、汽车制造商开始独立或依托一些厂商开发工业软件。这些顶级的头部制造业企业从丰富的产品线和复杂的环境中提炼模型,不断迭代产品、提高性能、修正错误、纠正偏差,使软件最契合客户的需求。
工业软件可分为工具类、运营类、工控类。工具类:CAD(计算机辅助设计)、CAE (工程仿真)、CAM(计算机数控编程软件)、CAPP(计算机辅助工艺规划)、EDA(电子设计自动化)、Digital Manufacturing(数字化制造)、PDM/PLM(产品数据管理/产品全生命周期管理),以及相关的专用软件。运营类:ERP(企业资源计划)、MES(制造执行系统)、CRM(客户关系管理)、SCM(供应链管理)、SRM(供应商关系管理)、EAM(企业资产管理)、HCM(人力资产管理)、BI(业务智能分析)、APS(先进生产排程)、QMS(质量管理系统)、PM(项目管理)、EMS(能源管理)、MDM(主数据管理)、LIMS(实验室管理)、BPM(业务流程管理)、协同办公与企业门户等。工控类:APC(高级过程控制)、DCS(集散控制系统)、PLC(可编程逻辑控制)、SCADA(数据采集与监控系统)、组态软件、DNC/MDC(分布式数控/机器数据采集),以及工业网络安全软件等。
三、工业网络通信发展
随着移动互联网的发展,网络和通信已真正融合在一起,统称网络通信。
自20世纪60年代开始,控制室和现场仪表之间采用电气信号传输,电动组合仪表如控制器、显示仪表、记录仪等开始大量使用。
20世纪70年代中期出现了集散控制系统(Distributed ControlSystem,DCS),在早期的DCS产品中,现场控制站间的通信是数字化的,数据通信标准RS-232、RS-485等被广泛应用,而现场控制站与仪表间的通信仍部分采用模拟信号。
20世纪80年代后期出现了现场总线技术(FCS),将数字化、网络化推进到现场仪表层,替代模拟(4~20mA/DC24V)信号,实现了控制系统整体的数字化与网络化。国际电工委员会在2000年1月通过了IEC61158国际标准,该标准包括8种类型的现场总线标准。现场总线的发展非常迅猛,但也暴露出许多不足,具体表现为:现有的现场总线标准过多,未能形成统一的标准;不同总线之间不能兼容,不能真正实现透明信息互访,无法实现信息的无缝集成;由于现场总线是专用实时通信网络,成本较高;现场总线的速度较低,支持的应用有限,不便于与互联网信息集成。
20世纪90年代出现了工业以太网技术,即在工业环境的自动化控制及过程控制中应用以太网的相关组件及技术。工业以太网采用TCP/IP协议,与IEEE802.3标准兼容,可以兼容各自特有的协议。为了突破现场总线控制系统发展中出现的标准过多、互不兼容、速率低、难以与其他系统进行信息集成的瓶颈,工业以太网技术能够适应企业管控一体化的要求,实现企业管理层、监控层和设备层的无缝连接,降低系统造价,提高系统性能。工业以太网技术直接应用于工业现场设备间的通信已成大势所趋。据美国权威调查机构ARC(Automation Research Company)报告指出,以太网不仅继续垄断商业计算机网络通信和工业控制系统的上层网络通信市场,还必将领导未来现场总线的发展,以太网和TCP/IP将成为工业自动化控制系统的基础协议。
工业无线技术兴起于21世纪初,通过无线自组网实现传感器、控制器和执行器的互联与数据传输构成了工业传感/控制网。工业无线技术适合大规模组网应用,可以实现智能仪表的即插即用。目前,工业无线网络与测控系统已成为工业控制领域的新热点。超宽带、Zigbee、蓝牙、终端直通技术(Device to Device,D2D)等短距离无线通信技术,数字电视广播及卫星通信技术等,都为人们提供了更广泛的网络覆盖及更快速的网络接入。未来无线通信系统将不再以单一的无线接入技术独立存在,而是一个包含多种无线接入技术的异构网络。
目前,移动蜂窝网络已经进入了5G(第五代移动通信技术)商用阶段,第六代移动通信技术研究也在如火如荼进行中。第一代移动通信系统是模拟通信系统,自第二代移动通信系统开始,都升级为数字通信系统。第二代移动通信系统以GSM、IS95为代表,在其上发展出的通用分组无线业务(General Packet Radio Service,GPRS)实现了移动数据传输承载,自此实现了手机上网,也就是移动互联网诞生。之后以 WCDMA、TD-SCDMA和CDMA2000为代表的较高性能的第三代移动通信系统为移动互联提供了更好的通信基础设施和能力。而第四代移动通信标准实现了接收和发送信息速度的质的飞跃,而且网络频谱宽、终端设备处理信息能力有了提升。4G网络在全世界得到最广泛商用,标志着移动互联达到了泛在、低成本、高品质应用的水平,可以称之为真正的移动互联时代正式到来。随着这个时代的到来,大量新模式新业态涌现出来,诞生了许多著名企业。近年来,随着用户对低时延、宽流量、广连接的要求日益增加,基于IoT的互联需求尤其是以汽车为代表的移动化智能终端开启了新的智联化历程,4G移动通信系统无法满足用户的需求,5G技术也进入了商用和工业领域。我国的5G设备的部署正在全面展开,5G时代将创造万物互联的新机遇。
四、新一代信息技术发展
(一)云计算
云计算(Cloud Computing)是一种通过网络统一组织和灵活调用各种信息通信技术(Information and Communications Technology,ICT)信息资源,实现大规模计算的信息处理方式。
在过去的十几年中,云计算从被质疑到成为新一代IT标准,从单纯的技术概念发展为影响整个 ICT 产业的业务模式。云计算的诞生消除了传统 IT 基础架构存在的弊端,如价格昂贵、结构复杂、难以惠及社会大众、资源分布不均和封闭、计算能力不对称等。同时,云计算具有超大规模、虚拟化、高可靠性、通用性强、高可伸缩性和成本低廉的优点,是ICT产业的发展趋势。
2006年,IBM 和谷歌联合推出云计算概念;2007年,Salesforce 发布 Force.com,即PaaS服务;2008年,谷歌推出Google App Engine。之后,云服务以风起云涌的态势出现在几乎所有传统业务面前,各大厂商不遗余力地进行着向云转型的新征程。2009—2016年,云计算功能日趋完善,种类日趋多样,传统企业开始通过自身能力扩展、收购等模式,纷纷投入云计算服务中。2016—2019年,通过深度竞争,主流平台产品和标准产品功能比较健全,市场格局相对稳定,云计算进入成熟阶段。未来云计算将拥有更广阔的发展空间,也将会诞生更多形式的服务和更丰富的应用场景。
(二)区块链
区块链(Blockchain)技术从本质上讲,是一个分布式共享数据库,存储于其中的数据或信息,具有“不可伪造”“全程留痕”“可以追溯”“公开透明”“集体维护”等特征。因为区块链技术可以安全提供即时、共享和完全透明的信息,因此可以促进业务网络中的交易记录及有形或无形资产的跟踪流程。区块链的主要特点是独立性、安全性、匿名性等。
区块链的发展历史可划分为六个阶段。2007—2009年为技术实验阶段,化名中本聪的比特币创始人开始探索用一系列技术创造一种新的货币——比特币,比特币体系的主要技术包括哈希函数、分布式账本、区块链、非对称加密、工作量证明,这些技术构成了区块链的最初版本;2010—2012年为极客小众阶段,2010年2月6日诞生了第一个比特币交易所,热衷互联网技术的极客们进入交易所参与比特币买卖;2013—2015年为市场酝酿阶段,大众开始了解比特币和区块链,尽管还不能普遍认同;2016—2018年为进入主流阶段,比特币的造富效应,以及比特币网络拥堵造成的交易溢出带动了其他虚拟货币及各种区块链应用的大爆发,出现众多百倍、千倍甚至万倍增值的区块链资产,引发全球疯狂追捧;2019—2021年为产业落地阶段,虚拟货币和区块链在市场、监管、认知等各方面进行调整,在区块链适宜的主要行业领域有一些企业稳步发展起来,加密货币得到较广泛应用;2022—2025年为产业成熟阶段,各种区块链项目落地见效之后,进入激烈而快速的市场竞争和产业整合阶段,三至五年内形成一些行业龙头企业,完成市场划分。
(三)人工智能
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(推演、人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
自1956年以来,人工智能的发展历程可划分为以下六个阶段。1956年至20世纪60年代初为起步发展期,人工智能概念提出后,机器定理证明、跳棋程序等应用,掀起人工智能发展的第一个高潮;20世纪60年代至70年代初期为反思发展期,接二连三的项目失败和预期目标的落空,使人工智能的发展走入低谷;20世纪70年代初期至80年代中期为应用发展期,专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮;20世纪80年代中期至90年代中期为低迷发展期,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来;20世纪90年代中期至2010年为稳步发展期,由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化;2011年至今为蓬勃发展期,分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
(四)元宇宙
元宇宙是一个平行且独立于现实世界的虚拟空间,是一个映射现实世界并越来越真实的在线虚拟世界。现实中的人可以使用数字身份在“元宇宙”中娱乐、社交、学习和工作等,打破了生活和游戏的边界。元宇宙是一个具有一系列要素的虚拟世界,这些要素包括:身份、朋友、沉浸感、低延迟、多样性、随地性、经济和文明等。
从技术角度看,全真虚实集成世界需要四个关键技术:现实虚拟化、虚拟真实化、全息互联网、智能执行体。现实虚拟化是把计算机视觉、语音、自然语言处理、情绪处理、分析决策等结合,目的是让虚拟人更接近真实的你,听说读写想,外形、声音、表情和动作都逼真。虚拟真实化是将虚拟模型制作成真实物体,如3D打印使真人与虚拟角色和物体进行交互。全息互联网是把虚拟世界和真实世界中分布于不同地方的人、事、物全部同步到一起,如混合一个远程的人和一个真人交流互动,未来可能会在嗅觉和味觉上也有突破。智能执行体是将研究问题建模到虚拟世界来进行,很多现实问题研究可能需要很长时间、很多人力或者资金点,包括气候变化、生成、现实化问题等,通过在虚拟世界建立模型,有助于改变时间和游戏规则,服务于现实世界。