3.3 热影响区

3.3.1 采用焊接铝合金结构时必须考虑热影响区材料强度降低带来的不利影响热影响区范围内强度的折减系数ρhaz应按表3.3.1采用

表3.3.1  热影响区范围内材料强度的折减系数ρ haz

表中数值适用于材料焊接后存放的环境温度大于 10℃存放时间大于3d的情况

本条是强制性条文,规定了焊接热影响区的一般设计要求。根据国内外研究资料,对于除O、T4或F状态的铝合金焊接结构,由于热输入的影响,在临近焊缝的区域存在材料强度降低的现象,该区域称为焊接热影响区。焊接热影响效应对焊接结构的承载力将带来非常不利的影响。

热影响区材料强度的降低可采用单一的折减系数ρhaz来考虑,该系数代表热影响区范围内材料强度同母材原始强度的比值。一般来说,热影响区材料的名义屈服强度f0.2的折减程度比抗拉强度fu的折减程度更大一些。根据同济大学所完成的采用MIG和TIG焊接工艺,母材为6061-T6合金的对接焊缝硬度试验,得到的折减系数平均值为0.59,由拉伸试验得到的f0.2的折减系数平均值为0.43,fu的折减系数平均值为0.62。欧洲规范给出的6061-T6合金f0.2fu的折减系数分别为0.48和0.60。英国规范对f0.2fu的折减不作区分,6061-T6合金的热影响区折减系数取0.50。由此可见,对于6061-T6合金,试验结果同欧规和英规的规定符合较好。因缺乏其他合金材料的试验数据,并由于英规的规定比欧规偏于安全,故表3.3.1中6×××系列合金及5083合金的ρhaz主要根据英规的规定值给出。在10℃以上的环境温度下至少存放3d的要求,是保证材料有最低限度的自然时效。

3×××合金在焊接后强度折减非常严重,根据工程经验焊接后热影响区的强度仅能达到初始强度的20%,因此表3.3.1中3003及3004合金的ρhaz取0.20。建议3×××系列合金不宜采用焊接连接。

对于表3.3.1未列出的其他材料,可由试验或参考其他国家设计规范确定其ρhaz值。

3.3.2 热影响区范围应符合下列规定:

1 当板件端部距焊缝边缘长度小于3bhaz 时,热影响区(图3.3.2)扩展至板件尽端。

图3.3.2 焊接热影响区范围

bhaz为板件的焊接热影响区宽度

2 采用熔化极惰性气体保护电弧焊(MIG焊)和钨极惰性气体保护电弧焊(TIG焊)焊接连接的6×××系列热处理合金或5×××系列冷加工硬化合金,热影响区宽度bhaz应符合表3.3.2的规定。

表3.3.2  热影响区宽度bhaz

注:1 α为参数;α=1+(T1-60)/120。

2 表中t为焊接件的平均厚度。当焊接件厚度相差超过一倍时,bhaz值应根据硬度试验结果确定。

本条规定了铝合金结构焊接热影响区的范围。

1 规定了对接焊缝和几种角焊缝连接的热影响区范围,因缺乏相关研究资料,对较厚焊件热影响区沿厚度方向的分布,偏保守地一律取热影响区边界垂直于焊件表面。

2 本条规定主要依据同济大学完成的对接焊缝连接试验结果,该结果稍大于欧规的规定。对于采用6061-T6合金的对接焊缝连接,当采用MIG焊接工艺时,随焊件厚度增大,热影响区范围也随之增大;采用TIG焊接工艺的焊件,其热影响区范围和同厚度的采用MIG焊接工艺的焊件基本相同,因此本条规定同样适用于MIG焊和TIG焊。由于试验焊件的最大厚度为16mm,因此仅规定了厚度在16mm以内焊件的热影响区范围。对于厚度超过16mm的焊件,实际应用中如需采用,可根据硬度试验结果确定。当退火温度较高时,热影响区的范围会随之增大,增大系数α的规定来自欧规。

3.3.3 在连接计算中,应对焊件强度进行折减;在构件承载力计算中,应对截面进行折减。

本条规定了铝合金结构中考虑焊接热影响效应的设计计算方法。

在焊缝连接计算中,需要校核热影响区范围内的应力不得超过其强度设计值,因此通常采用强度折减的方法来考虑热影响效应。在焊接构件承载力计算中,热影响区范围内材料强度降低带来的不利影响,通常采用将热影响区范围内材料强度取值同母材,但对截面进行折减的方法来考虑。