参考文献
[1]ROQUE BORT, MASSIMO SIGNORE, KIMBERLY TREMBLAY, et al. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development[J]. Developmental Biology, 2006, 290(1): 44-56.
[2]ZARET KS, GROMPE M. Generation and regeneration of cells of the liver and pancreas[J]. Science, 2008, 322(5907): 1490.
[3]FAN X, HAGOS EG, XU B, et al. Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish[J]. Developmental Biology, 2007, 310(2): 363-378.
[4]SCHIER AF, TALBOT WS. Molecular genetics of axis formation in zebrafish[J]. Annual Review of Genetics, 2005, 39(1): 561.
[5]GRAPIN-BOTTON A, CONSTAM D. Evolution of the mechanisms and molecular control of endoderm formation[J]. Mechanisms of Development, 2007, 124(4): 253-278.
[6]VINCENT SD, DUNN NR, HAYASHI S, et al. Cell fate decisions within the mouse organizer are governed by graded Nodal signals.[J]. Genes&Development, 2003, 17(13): 1646.
[7]MIZOGUCHI T, IZAWA T, KUROIWA A, et al. Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish[J]. Developmental Biology, 2006, 300(2): 612.
[8]POULAIN M, FURTHAUER M, THISSE B, et al. Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling[J]. Development(Cambridge, England), 2006, 133(11): 2189-2200.
[9]JOVANOVI Z, DUNJIC'S, JANKULOVSKI A. The transcription factor Vox represses endoderm development by interacting with Casanova and Pou2[J]. Development, 2013, 140(5): 1090-1099.
[10]YANG YP, ANDERSON RM, KLINGENSMITH J. BMP antagonism protects Nodal signaling in the gastrula to promote the tissue interactions underlying mammalian forebrain and craniofacial patterning[J]. Human Molecular Genetics, 2010, 19(15): 3030-3042.
[11]LOH K, ANG LT, ZHANG J, et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations[J]. Cell Stem Cell, 2014, 14(2): 237.
[12]ZORN AM, WELLS JM. Vertebrate endoderm development and organ formation[J]. Annual Review of Cell&Developmental Biology, 2009, 25(1): 221.
[13]SHIN D, SHIN CH, TUCKER J, et al. Bmp and Fgf signaling are essential for liver specification in zebrafish[J]. Development, 2007, 134(11): 2041.
[14]WANG J, RHEE S, PALARIA A, et al. FGF signaling is required for anterior but not posterior specification of the murine liver bud[J]. Developmental Dynamics An Official Publication of the American Association of Anatomists, 2015, 244(3): 431.
[15]CHUNG WS, CHONG HS, Stainier ADYR. Bmp2 Signaling Regulates the Hepatic versus Pancreatic Fate Decision[J]. Developmental Cell, 2008, 15(5): 738.
[16]NAYE F, VOZ ML, DETRY N, et al. Essential roles of zebrafish bmp2a, fgf10, and fgf24 in the specification of the ventral pancreas[J]. Molecular Biology of the Cell, 2012, 23(5): 945-954.
[17]MCLIN VA, RANKIN SA, ZORN AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development[J]. Development, 2007, 134(12): 2207-2217.
[18]NEGISHI T, NAGAI Y, ASAOKA Y, et al. Retinoic acid signaling positively regulates liver specification by inducing wnt2bb gene expression in medaka[J]. Hepatology, 2010, 51(3): 1037.
[19]POULAIN M, OBER EA. Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development[J]. Development, 2011, 138(16): 3557-3568.
[20]SO J, MARTIN BL, KIMELMAN D, et al. Wnt/β-catenin signaling cell-autonomously converts non-hepatic endodermal cells to a liver fate[J]. Biology Open, 2013, 2(1): 30-36.
[21]GOESSLING W, NORTH TE, LORD AM, et al. APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development[J]. Developmental Biology, 2008, 320(1): 161.
[22]MCLIN VA, RANKIN SA, ZORN AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development[J]. Development, 2007, 134(12): 2207-2217.
[23]BERG T, ROUNTREE CB, LEE L, et al. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via β-catenin activation[J]. Hepatology, 2007, 46(4): 1187-1197.
[24]ANTONIOU A, RAYNAUD P, CORDI S, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9[J]. Gastroenterology, 2009, 136(7): 2325-2333.
[25]LEMAIGRE FP. Molecular mechanisms of biliary development[J]. Progress in Molecular Biology&Translational Science, 2010, 97(97): 103-126.
[26]KIYOHASHI K, SEI KAKINUMA, AKIHIDE KAMIYA, et al. Wnt5a signaling mediates biliary differentiation of fetal hepatic stem/progenitor cells in mice[J]. Hepatology, 2013, 57(6): 2502-2513.
[27]SHIN D, MONGA SPS. Cellular and molecular basis of liver development[J]. Comprehensive Physiology, 2013, 3(2): 799-815.
[28]GORDILLO M, EVANS T, GOUONEVANS V. Orchestrating liver development[J]. Development, 2015, 142(12): 2094-108.
[29]STRAZZABOSCO M, FABRIS L. Development of the Bile Ducts: Essentials for the Clotman F, Lemaigre FP. Control of hepatic differentiation by activin/TGFβ signaling[J]. Cell Cycle, 2006, 5(2): 168-171.
[30]ZONG Y, PANIKKAR A, XU J, et al. Notch signaling controls liver development by regulating biliary differentiation[J]. Development, 2009, 136(10): 1727.
[31]LOZIER J, MCCRIGHT B, GRIDLEY T. Notch signaling regulates bile duct morphogenesis in mice[J]. PLoS One, 2008, 3: e1851.
[32]TCHORZ J S, KINTER J, MÜLLER M, et al. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice[J]. Hepatology, 2009, 50(3): 871-879.
[33]LEMAIGRE FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies[J]. Gastroenterology, 2009, 137: 62-79.
[34]RAYNAUD P, CARPENTIER R, ANTONIOU A, et al. Biliary differentiation and bile duct morphogenesis in development and disease[J]. Int J Biochem Cell Biol, 2011, 43: 245-256.
[35]WOODS A, HESLEGRAVE AJ, MUCKETT PJ, et al. LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice[J]. Biochemical Journal, 2011, 434(1): 49.
[36]TANIMIZU N, KANEKO K, ITOH T, et al. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice[J]. Hepatology, 2016, 64(1): 175.
[37]JUST PA, PONCY A, CHARAWI S, et al. LKB1 and notch pathways interact and control biliary morphogenesis[J]. Plos One, 2015, 10(12): e0145400.
[38]TERADA T. Human fetal ductal plate revisited: II. MUC1, MUC5AC, and MUC6 are expressed in human fetal ductal plate and MUC1 is expressed also in remodeling ductal plate, remodeled ductal plate and mature bile ducts of human fetal livers[J]. International Journal of Clinical&Experimental Pathology, 2012, 6(4): 571-585.
[39]TERADA T. Development of extrahepatic bile duct excluding gall bladder in human fetuses: histological, histochemical, and immunohistochemical analysis.[J]. Microscopy Research&Technique, 2014, 77(10): 832-840.
[40]KOHSAKA T, YUAN ZR, GUO SX, et al. The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia[J]. Hepatology, 2002, 36(4): 904-912.