- 再生医学:生物材料与组织再生
- 付小兵等主编
- 3080字
- 2022-04-21 16:51:00
参考文献
[1] KOETTING MC,PETERS JT,STEICHEN SD,et al.Stimulus-responsive hydrogels: theory,modern advances, and applications[J].Mater Sci Eng:R:Reports,2015,93:1-49.
[2] WANG X,WANG C,ZHANG Q,et al.Cheng.Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery[J].Chem Commun,2016,52:978-981.
[3] WANG D,WAGNER M,BUTT H,et al.Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue[J].Soft Matter,2015,11:7656-7662.
[4] SHI K,LIU Z,WEI Y,et al.Near-infrared light-responsive poly (N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility[J].ACS Appl Mater Interfaces,2015,7:27289-27298.
[5] KWON SS,KONG BJ,PARK SN.Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions[J].Eur J Pharm Biopharms,2015,92:146-154.
[6] MUKHOPADHYAY P, CHAKRABORTY S, BHATTACHARYA S,et al.pH-sensitive chitosan/alginate coreshell nanoparticles for efficient and safe oral insulin delivery[J].Int J Biol Macromol,2015,72:640-648.
[7] LIU J,HUANG Y,KUMAR A,et al.pH-sensitive nanosystems for drug delivery in cancer therapy.Biotechnol Adv,2014,32:693-710.
[8] KLOUDA L.Thermoresponsive hydrogels in biomedical applications:A seven-year update[J].Eur J Pharm Biopharm,2015,97:338-349.
[9] LIOW SS,DOU Q,KAI D,et al.Thermogels:in situ gelling biomaterial[J].ACS Biomater Sci Eng,2016,2:295-316.
[10] GORNALL JL,TERENTJEV EM.Helix-coil transition of gelatin:helical morphology and stability[J].Soft Matter,2008,4:544-549.
[11] VAN DE VELDE F,ANTIPOVA AS,ROLLEMA HS,et al.The structure of κ/ι-hybrid carrageenans II.Coil-helix transition as a function of chain composition[J].Carbohydr Res,2005,340:1113-1129.
[12] PICULELL L,NILSSON S.Anion-specific salt effects in aqueous agarose systems.1.Effects on the coil-helix transition and gelation of agarose[J].J Phys Chem,1989,93:5596-5601.
[13] BOHIDAR HB,JENA SS.Kinetics of sol-gel transition in thermoreversible gelation of gelatin[J].J Chem Phys,1993,98:8970-8977.
[14] VIEBKE C,PICULELL L,NILSSON S.On the mechanism of gelation of helix-forming biopolymers[J].Macromolecules,1994,27:4160-4166.
[15] SARKAR N.Thermal gelation properties of methyl and hydroxypropyl methylcellulose[J].J Appl Polym Sci,1979,24:1073-1087.
[16] KLOUDA L,MIKOS AG.Thermoresponsive hydrogels in biomedical applications[J].European J Pharm Biopharm,2008,68:34-45.
[17] MATANOVIC'MR,KRISTL J,GRABNAR PA.Thermoresponsive polymers:insights into decisive hydrogel characteristics,mechanisms of gelation,and promising biomedical applications[J].Int J Pharm,2014,472:262-275.
[18] CABANA A,AI T-KADI A,JUHÁSZ J.Study of the gelation process of polyethylene oxidea-polypropylene oxideb-polyethylene oxideacopolymer (poloxamer 407)aqueous solutions[J].J Colloid Interface Sci,1997,190:307-312.
[19] RUDIN A,CHOI P.The elements of polymer science and engineering.Academic Press,2012.
[20] FINKENSTADT VL,MILLANE RP.Crystal structure of Valonia cellulose Iβ [J].Macromolecules, 1998, 31(1998):7776-7783.
[21] SWATLOSKI RP,SPEAR SK,HOLBREY JD,et al.Dissolution of cellose with ionic liquids[J].J Am Chem Soc,2002,124:4974-4975.
[22] NASATTO PL,PIGNON F,SILVEIRA JLM,et al.Methylcellulose,a cellulose derivative with original physical properties and extended applications[J].Polymers,2015,7:777-803.
[23] LI L,SHAN H,YUE CY,et al.Thermally induced association and dissociation of methylcellulose in aqueous solutions[J].Langmuir,2002,18:7291-7298.
[24] KIM MH,PARK H,NAM HC,et al.Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing[J].Carbohydr Polym,2018,181:579-586.
[25] KIM MH,KIM BS,PARK H,et al.Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration[J].Int J Biol Macromol,2018,109:57-64.
[26] ZHANG L, WANG Y, LIU H, etal.Developing hydroxypropyl methylcellulose/hydroxypropyl starch blends for use as capsule materials[J].Carbohydr Polym,2013,98:73-79.
[27] NURKEEVA ZS,MUN GA,KHUTORYANSKIY VV,et al.Complex formation of methylcellulose with poly(acrylic acid)[J].Polym Int,2000,49:867-870.
[28] KIM EJ,CHOI JS,KIM JS,et al.Injectable and thermosensitive soluble extracellular matrix and methylcellulose hydrogels for stem cell delivery in skin wounds[J].Biomacromolecules,2015,17:4-11.
[29] ZHUO F,LIU X,GAO Q,et al.Injectable hyaluronanmethylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering[J].Mater Sci Engg:C,2017,81:1-7.
[30] CHENITE A,CHAPUT C,WANG D,et al.Novel injectable neutral solutions of chitosan form biodegradable gels in situ[J].Biomaterials,2000,21:2155-2161.
[31] BERGER J,REIST M,MAYER JM,et al.Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications[J].European J Pharm Biopharm,2004,57:19-34.
[32] NAIR LS,LAURENCIN CT.Biodegradable polymers as biomaterials[J].Prog Polym Sci,2007,32:762-798.
[33] DASHNAU JL,NUCCI NV,SHARP KA,et al.Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures[J].J Phys Chem B,2006,110:13670-13677.
[34] ZHOU HY,CHEN XG,KONG M,et al.Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system[J].Carbohydre Polym,2008,73:265-273.
[35] MOLINARO G,LEROUX J,DAMAs J,et al.Biocompatibility of thermosensitive chitosan-based hydrogels:an in vivo experimental approach to injectable biomaterials[J].Biomaterials,2002,23:2717-2722.
[36] BHATTARAI N,RAMAY HR,GUNN J,et al.PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release[J].J Control Release,2005,103:609-624.
[37] GANJI F,ABDEKHODAIE MJ.Synthesis and characterization of a new thermosensitive chitosan-PEG diblock copolymer[J].Carbohydr Polym,2008,74:435-441.
[38] CHO JH,KIM S,PARK KD,et al.Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly (N-isopropylacrylamide)and water-soluble chitosan copolymer[J].Biomaterials, 2004, 25:5743-5751.
[39] CAO Y,ZHANG C,SHEN W,et al.Poly (N-isopropylacrylamide)-chitosan as thermosensitive in situ gelforming system for ocular drug delivery[J].J Control Release,2007,120:186-194.
[40] CHUNG HJ,GO DH,BAE JW,et al.Synthesis and characterization of Pluronic®grafted chitosan copolymer as a novel injectable biomaterial[J].Curr Appl Phys,2005,5:485-488.
[41] PARK KM,BAE JW,JOUNG YK,et al.Nanoaggregate of thermosensitive chitosan-Pluronic®for sustained release of hydrophobic drug[J].Colloids Surf B Biointerfaces,2008,63:1-6.
[42] PARK KM,LEE SY,JOUNG YK,et al.Thermosensitive chitosan-Pluronic®hydrogel as an injectable cell delivery carrier for cartilage regeneration[J].Acta Biomater,2009,5:1956-1965.
[43] TANG Y,DU Y,HU X,et al.Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel[J].Carbohydr Polym,2007,67:491-499.
[44] DONG L,WANG S,ZHAO X,et al.3D-printed poly (εcaprolactone)scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering[J].Sci Rep,2017,7:13412(9 pp).
[45] WU Q,MAIRE M,LEROUGE S,et al.3D printing of microstructured and stretchable chitosan hydrogelfor guided cell growth[J].Adv Biosyst,2017,1:1700058(6 pp).
[46] WU Q,THERRIAULT D,HEUZEY M.Processing and properties of chitosan inks for 3D printing of hydrogel microstructures[J].ACS Biomater Sci Eng(Article ASAP),2018,(10 pp).
[47] NG WL,YEONG WY,NAING MW.Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering[J].Int J Bioprinting,2016,2:53-62.
[48] ROEHM KD,MADIHALLY SV.Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer[J].Biofabrication,2017,10:015002(15 pp).
[49] PEREDA M,PONCE AG,MARCOVICH NE,et al.Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity[J].Food Hydrocolloids,2011,25:1372-1381.
[50] TANIOKA A,MIYASAKA K,ISHIKAWA K.Reconstitution of collagen-fold structure with stretching of gelatin film[J].Biopolymers,1976,15:1505-1511.
[51] TAN H,HUANG D,LAO L,et al.RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery[J].J Biomed Mater Res Part B Appl Biomater,2009,91:228-238.
[52] NICHOL JW,KOSHY ST,BAE H,et al.Cell-laden microengineered gelatin methacrylate hydrogels[J].Biomaterials,2010,31:5536-5544.
[53] LEFEBVRE V,PEETERS-JORIS C,VAES G.Modulation by interleukin 1 and tumor necrosis factor α of production of collagenase,tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes[J].Biochim Biophys Acta,1990,1052:366-378.
[54] TOSH SM,MARANGONI AG.Determination of the maximum gelation temperature in gelatin gels[J].Appl Phys Letts,2004,84:4242-4244.
[55] BILLIET T,GEVAERT E,DE SCHRYVER T,et al.The 3D printing of gelatin methacrylamide cell-laden tissueengineered constructs with high cell viability[J].Biomaterials,2014,35:49-62.
[56] DUAN B,HOCKADAY LA,KANG KH,et al.3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels[J].J Biomedl Mater Resh Part A,2013,101:1255-1264.
[57] LEE VK,KIM DY,NGO H,et al.Creating perfused functional vascular channels using 3D bio-printing technology[J].Biomaterials,2014,35:8092-8102.
[58] SCHILD HG.Poly (N-isopropylacrylamide):experiment,theory and application[J].Prog Polym Sci,1992,17:163-249.
[59] CHIANTORE O,GUAITA M,TROSSARELLI L.Solution properties of poly (N-isopropylacrylamide).[J]Die Makromolekulare Chemie:Macromol Chem Phys,1979,180:969-973.
[60] INOMATA H,GOTO S,SAITO S.Phase transition of N-substituted acrylamide gels.Macromolecules,1990,23:4887-4888.
[61] WOOTEN WC,BLANTON RB,COOVER JR HW.Effect of pH on homopolymerization of N-isopropylacrylamide[J].J Polym Sci,1957,25:403-412.
[62] OTAKE K,INOMATA H,KONNO M,et al.Thermal analysis of the volume phase transition with N-isopropylacrylamide gels.Macromolecules[J],1990,23:283-289.
[63] SCHILD HG,TIRRELL DA.Interaction of poly (N-isopropylacrylamide)with sodium n-alkyl sulfates in aqueous solution[J].Langmuir,1991,7:665-671.
[64] GANACHAUD F,MONTEIRO MJ,GILBERT RG,et al.Molecular weight characterization of poly(N-isopropylacrylamide)prepared by living free-radical polymerization[J].Macromolecules,2000,33:6738-6745.
[65] XIA Y,YIN X,BURKE NAD,et al.Thermal response of narrow-disperse poly (N-isopropylacrylamide)prepared by atom transfer radical polymerization[J].Macromolecules,2005,38:5937-5943.
[66] XIA Y,BURKE NAD,STÖVER HDH.End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide)prepared by atom transfer radical polymerization[J].Macromolecules,2006,39:2275-2283.
[67] KIM S,HEALY KE.Synthesis and characterization of injectable poly (N-isopropylacrylamide-co-acrylic acid)hydrogels with proteolytically degradable cross-links[J].Biomacromolecules,2003,4:1214-1223.
[68] KIM S,CHUNG EH,GILBERT M,et al.Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid)semi-interpenetrating polymer networks.I.Degradation and cell migration[J].J Biomed Mater Res Part A,2005,75:73-88.
[69] NERADOVICD, VANSTEENBERGENMJ, VANSTEELANT L,et al.Degradation mechanism and kinetics of thermosensitive polyacrylamides containing lactic acid side chains[J].Macromolecules,2003,36:7491-7498.
[70] FUJIMOTO KL,MA Z,NELSON DM,et al.Synthesis,characterization and therapeutic efficacy of a biodegradable,thermoresponsive hydrogel designed for application in chronic infarcted myocardium[J].Biomaterials,2009,30:4357-4368.
[71] MA Z,NELSON DM,HONG Y,et al.Thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability[J].Biomacromolecules,2010,11:1873-1881.
[72] CUI Z,LEE BH,VERNON BL.New hydrolysis-dependent thermosensitive polymer for an injectable degradable system[J].Biomacromolecules,2007,8:1280-1286.
[73] CUI Z,LEE BH,PAUKEN C,et al.Manipulating degradation time in a N-isopropylacrylamide-based co-polymer with hydrolysis-dependent LCST[J].J Biomater Sci,Polym Edit,2010,21:913-926.
[74] VO TN,EKENSEAIR AK,KASPER FK,et al.Synthesis,physicochemical characterization,and cytocompatibility of bioresorbable,dual-gelling injectable hydrogels[J].Biomacromolecules,2013,15:132-142.
[75] ZHANG J,PEPPAS NA.Synthesis and characterization of pH-and temperature-sensitive poly (methacrylic acid)/poly (N-isopropylacrylamide)interpenetrating polymeric networks[J].Macromolecules, 2000,33: 102-107.
[76] EKENSEAIR AK,BOERE KWM,TZOUANAS SN,et al.Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering[J].Biomacromolecules,2012,13:1908-1915.
[77] EKENSEAIR AK,BOERE KWM,TZOUANAS SN,et al.Structure-property evaluation of thermally and chemically gelling injectable hydrogels for tissue engineering[J].Biomacromolecules,2012,13:2821-2830.
[78] VO TN,EKENSEAIR AK,SPICER PP,et al.In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable,dual-gelling hydrogels for bone tissue engineering[J].J Control Release,2015,205:25-34.
[79] WATSON BM,VO TN,TATARA AM,et al.Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering[J].Biomaterials,2015,67:286-296.
[80] WATSON BM,VO TN,ENGEL PS,et al.Biodegradable,in situ-forming cell-laden hydrogel composites of hydroxyapatite nanoparticles for bone regeneration[J].Industrial Eng Chem Res,2015,54:10206-10211.
[81] BOERE KWM,SOLIMAN BG,RIJKERS DTS,et al.Thermoresponsive injectable hydrogels cross-linked by native chemical ligation[J].Macromolecules,2014,47:2430-2438.
[82] BOERE KWM,BLOKZIJL MM,VISSER J,et al.Biofabrication of reinforced 3D-scaffolds using two-component hydrogels[J].J Mater Chemy B,2015,3:9067-9078.
[83] KESTI M,MÜLLER M,BECHER J,et al.A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation[J].Acta Biomater,2015,11:162-172.
[84] ZHAO X,LIU W,CHEN D,et al.Effect of block order of ABA-and BAB-type NIPAAm/HEMA triblock copolymers on thermoresponsive behavior of solutions[J].Macromol Chem Phys,2007,208:1773-1781.
[85] RUEL-GARIEPY E,LEROUX J.In situ-forming hydrogels—review of temperature-sensitive systems[J].Eur J Pharm Biopharms,2004,58:409-426.
[86] LIPPENS E,SWENNEN I,GIRONÈS J,et al.Cell survival and proliferation after encapsulation in a chemically modified Pluronic® F127 hydrogel[J].J Biomater Appl,2013,27:828-839.
[87] KABANOV AV,ALAKHOV VY.Pluronic® block copolymers in drug delivery:From micellar nanocontainers to biological response modifiers[J].Crit Rev Ther Drug Carrier Syst,2002,19(1):1-72.
[88] BATRAKOVA EV,KABANOV AV.Pluronic® block copolymers:evolution of drug delivery concept from inert nanocarriers to biological response modifiers[J].J Control Release,2008,130:98-106.
[89] JUNG Y,PARK W,PARK H,et al.Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic®F-127 for sustained NSAID delivery[J].Carbohydr Polym,2017,156:403-408.
[90] KANG H,LEE SJ,KO IK,et al.A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J].Nature Biotechnol,2016,34:312-319.
[91] MÜLLER M,BECHER J,SCHNABELRAUCH M,et al.Nanostructured Pluronic®hydrogels as bioinks for 3D bioprinting[J].Biofabrication,2015,7:035006 (18 pp).
[92] JEONG B,BAE YH,KIM SW.Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers[J].J Control Release,2000,63:155-163.
[93] SHIM MS,LEE HT,SHIM WS,et al.Poly (D,L-lactic acid-co-glycolic acid)-b-poly (ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water[J].J Biomed Mater Res,2002,61:188-196.
[94] CHEN L,CI T,YU L,et al.Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA-PEG-PLGA copolymer aqueous solutions[J].Macromolecules,2015,48:3662-3671.
[95] YU L,ZHANG Z,DING J.Influence of LA and GA sequence in the PLGA block on the properties of thermogelling PLGA-PEG-PLGA block copolymers[J].Biomacromolecules,2011,12:1290-1297.
[96] YU L,CI T,ZHOU S,et al.The thermogelling PLGAPEG-PLGA block copolymer as a sustained release matrix of doxorubicin[J].Biomater Sci,2013,1:411-420.
[97] YAN Q,XIAO L,TAN L,et al.Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration:in vitro and in vivo characteristics[J].J Biomed Mater Res Part A,2015,103:3580-3589.
[98] WANG P,CHU W,ZHUO X,et al.Modified PLGAPEG-PLGA thermosensitive hydrogels with suitable thermosensitivity and properties for use in a drug delivery system[J].J Mater Chem B,2017,5:1551-1565.
[99] MIYAZAKI M,MAEDA T,HIRASHIMA K,et al.PEG-based nanocomposite hydrogel:Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration[J].Polymer,2017,115:246-254.
[100] ZHANG Y,ZHANG J,CHANG F,et al.Repair of fullthickness articular cartilage defect using stem cell-encapsulated thermogel[J].Mater Sci Eng C,2018,88:79-87.
[101] TSAI Y,LI S,HU S,et al.Synthesis of thermoresponsive amphiphilic polyurethane gel as a new cell printing material near body temperature[J].ACS Appl Mater Interfaces,2015,7:27613-27623.
[102] HSIEH F,LIN H,HSU S.3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair[J].Biomaterials,2015,71:48-57.
[103] LORSON T,JAKSCH S,LÜBTOW MM,et al.A thermogelling supramolecular hydrogelwith sponge-like morphology as a cytocompatible bioink[J].Biomacromolecules,2017,18:2161-2171.
阅读原文,请扫描二维码