3.2.1 反欺诈数据层
金融欺诈是指借款人用虚构数据、隐瞒事实的方式来骗取贷款,且在申请贷款后主观上没有还款意愿,或客观上没有偿还能力,可能造成出借人资金损失的行为。常见的金融欺诈类型有虚假用户注册、企业欺诈、金融钓鱼网站、病毒木马程序、账户隐私窃取、融资套现、他人冒用等,如图3-9所示。
图3-9 金融欺诈常见类型
金融反欺诈模型的底层为数据层,即数据来源。反欺诈建模需要从不同数据源采集多维度数据,且数据源越多越好,特别是做支付、助贷、征信类的大数据公司。
以企业数字融资为例,在完成金融贷款业务的申请、授信、建额、提款、还款等过程中,欺诈者可以通过信息流、业务流、数据流等信贷欺诈的手段来获得银行的申请授信,从而获得银行的放款,如图3-10所示。
图3-10 企业数字融资欺诈
·信息流欺诈:欺诈者以“拖库”的形式入侵有价值的网络站点,把注册用户的资料数据库全部盗走;以“撞库”的形式用获得的用户名和密码在其他网站批量尝试登录,进而盗取更有价值的东西;以“洗库”的形式通过一系列技术手段和黑色产业链得到有价值的用户数据并变现。
·业务流欺诈:欺诈者基于变量和模型输出,穷举范围内变量的不同取值,判断所取的值是否满足授信模型中的条件,若命中多条规则,则做出决策改变和风险判断,直到找到全部符合条件的值为止。
·数据流欺诈:按欺诈主体、欺诈途径、欺诈阶段等维度,欺诈者采取不同的欺诈行为,比如通过虚构企业规模、经营范围、贷款用途信息,虚增固定资产、交易流水、项目利润等数据,使自身符合政策准入条件或通过系统规则检测。
因此,我们做反欺诈时需要获得数据层的黑名单、多头借贷等信息,以做贷前风控和贷中预警,提高企业融资申请的准入门槛,实时判断每一笔交易行为的风险。