3.1 智能推荐的底层逻辑
智能推荐是基于大数据和人工智能技术建立的一套满足自身业务需求的推荐服务框架。行业中比较出名的智能推荐引擎有阿里云智能推荐、字节跳动灵驹、腾讯广点通、百度凤巢系统等。
常见的智能推荐方式包括精确匹配、短语匹配、核心词匹配、智能匹配,如图3-1所示。其中,智能匹配是一种比短语匹配覆盖流量更大的匹配方式,为客户提供个性化推荐服务。智能匹配由系统智能理解并匹配客户的关键词来自动触发搜索结果,从而帮助客户找到所需。
图3-1 智能推荐的匹配方式
以华创金融的贷款推荐为例,其利用自然语言处理、深度学习、知识图谱等技术,针对客户特征、访问行为和贷款数据等各类关键信息,抽取大量的金融文本数据和客户标签画像来构建贷款推荐引擎,如图3-2所示。该产品利用系统的快速识别和精准分发能力,给客户推荐有针对性的贷款内容,让客户快速找到符合自己意愿的贷款产品,从而更精准地定位潜在客户,降低转化成本,提高投资回报率。
图3-2 贷款产品推荐逻辑
个性化智能推荐引擎这种数据服务平台是建立在海量数据挖掘基础上的,为客户提供个性化内容推荐、决策支持和信息分发。构建智能推荐引擎的关键在于挖掘数据,构建模型,推荐场景并进行指标分析。