参考文献

1. Goldin,A. L.,et al. Nomenclature of voltage-gated sodium channels.Neuron,2000.28(2):365-368.
2. Dubois,J.M.,C.Bergman.Late sodium current in the node of Ranvier.Pflugers Arch,1975,357(1-2):145-148.
3. Clancy,C.E.,et al.Non-equilibrium gating in cardiac Na+ channels:an original mechanism of arrhythmia.Circulation,2003,107(17):2233-2237.
4. Kiyosue,T.M.Arita.Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes.Circ Res,1989,64(2):389-397.
5. Grandi E.,et al.Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials.Biophys J,2007,93(11):3835-3847.
6. Maltsev,V.A.,A.I.Undrovinas,A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. Cardiovasc Res,2006,69(1):116-127.
7. Marangoni S.,et al. A Brugada syndrome mutation(p. S216L)and its modulation by p. H558R polymorphism:standard and dynamic characterization. Cardiovasc Res,2011,91(4):606-616.
8. Maltsev,V.A.,J.W.Kyle,A.Undrovinas.Late Na+ current produced by human cardiac Na+ channel isoform Nav 1. 5 is modulated by its beta1 subunit.J Physiol Sci,2009,59(3):217-225.
9. Yong S.L.,et al.Characterization of the cardiac sodium channel SCN5A mutation,N1325S,in single murine ventricular myocytes.Biochem Biophys Res Commun,2007,352(2):378-383.
10. Zhang T.,et al.LQTS mutation N1325S in cardiac sodium channel gene SCN5A causes cardiomyocyte apoptosis,cardiac fibrosis and contractile dysfunction in mice.Int J Cardiol,2011,147(2):239-245.
11. Undrovinas,A.and V.A.Maltsev,Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem,2008,6(4):348-359.
12. Valdivia,C.R.,et al.Increased late sodium current in myocytes from a canine heart failure model and from failing human heart.J Mol Cell Cardiol,2005,38(3):475-483.
13. Houser,S.R.Can novel therapies for arrhythmias caused by spontaneous sarcoplasmic reticulum Ca2+ release be developed using mouse models?Circ Res,2005,96(10):1031-1032.
14. Bers,D.M.,W.H.Barry and S.Despa,Intracellular Na+ regulation in cardiac myocytes.Cardiovasc Res,2003,57(4):897-912.
15. Chaitman,B.R.Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions.Circulation,2006,113(20):2462-2472.
16. Grandi E.,et al. Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials.Biophys J,2007,93(11):3835-3847.
17. Yao L.,et al.Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol,2011,301(3):C577-586.
18. Maier,L.S.A novel mechanism for the treatment of angina,arrhythmias,and diastolic dysfunction:inhibition of late I (Na)using ranolazine. J Cardiovasc Pharmacol,2009,54(4):279-286.
19. Maltsev,V.A.,et al.Modulation of late sodium current by Ca2+,calmodulin,and CaMKII in normal and failing dog cardiomyocytes:similarities and differences. Am J Physiol Heart Circ Physiol,2008,294(4):H1597-608.
20. Moreno,J.D.,C.E.Clancy.Pathophysiology of the cardiac late Na current and its potential as a drug target.J Mol Cell Cardiol,2012,52(3):608-619.
21. Zaza A.,M. Rocchetti. The late Na + current--origin and pathophysiological relevance.Cardiovasc Drugs Ther,2013,27(1):61-68.
22. Rocchetti M.,et al.Ranolazine prevents INaL enhancement and blunts myocardial remodelling in a model of pulmonary hypertension.Cardiovasc Res,2014,104(1):37-48.
23. Pastore,J.M.,et al.Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation,1999,99 (10):1385-1394.
24. Weiss,J.N.,et al.Alternans and arrhythmias:from cell to heart.Circ Res,2011,108(1):98-112.
25. Lyon,A.R.,et al.Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart.Proc Natl Acad Sci U S A,2009,106 (16):6854-6859.
26. Wei,S.,et al. T-tubule remodeling during transition from hypertrophy to heart failure.Circ Res,2010,107(4):520-531.
27. Aistrup,G.L.,et al. Inhibition of the late sodium current slows t-tubule disruption during the progression of hypertensive heart disease in the rat.Am J Physiol Heart Circ Physiol,2013,305(7):H1068-1079.
28. Belardinelli,L.,et al.A novel,potent,and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias.J Pharmacol Exp Ther,2013,344(1):23-32.
29. Saint D.A.The cardiac persistent sodium current:an appealing therapeutic target?Br J Pharmacol,2008,153(6):1133-1142.
30. Antzelevitch C.et al.Electrophysiologic basis for the antiarrhythmic actions of ranolazine.Heart Rhythm,2011,8(8):1281-1290.
31. Antzelevitch C.,et al.Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent.J Cardiovasc Pharmacol Ther,2004,9 Suppl 1:S65-83.
32. Tavazzi L.Ranolazine,a new antianginal drug.Future Cardiol,2005,1(4):447-455.
33. Fish J.M.,et al.Epicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization:implications for biventricular pacing. Circulation,2004,109(17):2136-2142.
34. Reddy B. M.,H. S. Weintraub,A. Z. Schwartzbard. Ranolazine:a new approach to treating an old problem.Tex Heart Inst J,2010,37(6):641-647.
35. Chevalier,M.,et al.Late cardiac sodium current can be assessed using automated patch-clamp. F1000Res,2014,3:245.
36. Ulbricht,W.Effects of veratridine on sodium currents and fluxes.Rev Physiol Biochem Pharmacol,1998,133:1-54.
37. Shryock,J.C.,et al.The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res,2013,99(4):600-611.
38. Yang,T.,et al.Screening for acute IKr block is insufficient to detect torsades de pointes liability:role of late sodium current.Circulation,2014,130(3):224-234.
39. Pezhouman A.,et al.Selective inhibition of late sodium current suppresses ventricular tachycardia and fibrillation in intact rat hearts.Heart Rhythm,2014,11(3):492-501.
40. Bonatti R.,et al.Selective late sodium current blockade with GS-458967 markedly reduces ischemia-induced atrial and ventricular repolarization alternans and ECG heterogeneity. Heart Rhythm,2014,11(10):1827-1835.