人工智能的主要类型

信息处理的方法取决于其所包含的虚拟机。我们将在后面的章节中看到,这主要有五种处理类型,每种处理类型又都包含很多变体。一种是经典逻辑或符号主义,有时称为有效的老式人工智能(Geod Old-Fashioned AI,以下简称GOFAI);另一种是人工神经网络或联结主义。此外,还有进化编程、细胞自动机以及动力系统。

工作者通常只使用一种方法来处理信息,但也存在混合虚拟机。例如,在第4章中提到的一个在符号主义处理和联结主义处理之间不断切换的人类行为理论(这解释了为什么有的人在完成计划任务的过程中,会分心去关注环境中与之无关的东西以及这种现象是如何发生的)。第5章描述了一款集“情境”机器人学、神经网络和进化编程三者于一体的感觉运动装置(在装置的协助下,机器人将纸板三角形用作地标,找到了“回家”的路线)。

除了实际应用外,这些方法能够启发心智、行为和生活。神经网络有助于模拟大脑的内部结构以及进行模式识别和学习。经典逻辑人工智能(特别是与统计学结合时)可以模拟学习、规划和推理。进化编程阐明了生物进化和大脑发育。细胞自动机和动力系统可用来模拟生物体的发育。有些方法更接近于生物学,而不是心理学;有些方法更接近非条件反射行为,而不是慎重思考。要想全面了解心智,除了要用到上述所有方法外,还可能需要更多别的方法。

许多人工智能工作者并不关心心智的运作方式,他们只注重技术效率,而不追求科学理解。即使人工智能技术起源于心理学,但现在与心理学的联系却很少。然而,我们会发现,如果要想在强人工智能(artificial general intelligence)方面取得进步,我们需要加深理解心智的计算架构。