- 你学的数学可能是假的
- (德)霍格尔·丹贝克
- 1049字
- 2021-03-24 10:37:27
恼人的数字对
法国科学家斯坦尼斯拉斯·狄昂(Stanislas Dehaene)试图在实验中通过有针对性的训练来消除这种距离效应。为了能更好地进行训练,他的测试与莫耶尔和兰道尔的测试类似,但更简单。计算机显示屏显示出4个数字1、4、6、9中的一个。测试对象是来自俄勒冈大学的一批学生,他们只需要按下按钮来决定被显示的数字是大于5还是小于5。
狄昂认为,这个过程非常简单:“你想不到比这更简单的了:当你看到‘1’或‘4’时,就按左边的按钮;看到‘6’或‘9’,就按右边的按钮。”测试对象们练习了很多天,总共完成了多达1600轮测试。
但是最后,在看到与5相邻的数字4和6时,大学生们的反应时间始终比看到1和9时要长。虽然反应时间随着实验的进程都更短了,但将4∶6、1∶9进行比较时,反应时间的变化并不明显。
狄昂反复思考,到底该如何解释这个结果。最后他得出的结论是:当比较两个数字时,大脑显然没有使用已经存储的表格,比如说,在这张表格里写着:6>5。在这种情况下,决策时间长短将不取决于数字间的差距。唯一合理的解释是:人脑里有一种数轴。狄昂猜想,在大脑的犁沟和褶皱的某处,一定有某种模拟的阿拉伯数字。
你可以把数轴想象成裁缝的一卷旧卷尺,要确定9是不是大于1,快速看一眼位置就够了,但遇到5和6就得更仔细,到底哪个数字在卷尺上更靠右——在某些情况下你也不能很快判断。
小幽默
一个数学家教育他的孩子们懂礼貌:“我告诉过你们n次了,我告诉过你们n+1次了……”
还有一个实验为数轴的存在提供了确凿的证据。这次,测试对象们会看到31—99之间的某些两位数,他们必须判断一个数字是大于65,还是小于65。结果证明:数字越接近65,被测试者的反应时间就越长。
同时,对判断起到关键作用的可能是十位上的数?这一假设并未得到证实。其实,当他们看到71和65时,会比面对69和65时更快地判断;当看到79和65时,反应时间还会更短。这确实证明,不是十位上的数字,而是与65的距离,才是影响判断时间的最关键因素。
我们脑海里的数轴还有一个有趣的特征:这个数轴的量表,不像人们所想的那样是呈线性的,而是呈对数的。也就是说,1—10的距离与10—100的距离没什么区别。
因为,在看到较大数值时,我们脑海中的量表整个被压缩了,所以,我们无法绝对感知数字之间的距离,而是只能相对感知。因此,我们会觉得1和2之间的距离大于11和12之间的距离,尽管两者间的距离都是1。
这个原则也有助于我们比较更大的数量。如果我们能感知到10只绵羊和13只绵羊之间的差别,那么扩大20倍的羊群,即200只绵羊和260只绵羊之间的差别,我们也能成功感知到。