- 茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解
- 圣才电子书
- 20336字
- 2021-06-04 16:59:41
2.2 课后习题详解
一、随机变量及其分布
1口袋中有5个球,编号为1,2,3,4,5.从中任取3个,以X表示取出的3个球中的最大号码.
(1)试求X的分布列;
(2)写出X的分布函数,并作图.
解:(1)从5个球中任取3个,共有种等可能取法.X为取出的3个
球中的最大号码,则X的可能取值为3,4,5.因为P(X=i)=P(X≤i)-P(X≤i-1),且当i≥3时,有
所以
所以X的分布列为
(2)由分布函数的定义知
F(x)的图形如图2-2-1.
图2-2-1
2一颗骰子抛两次,求以下随机变量的分布列:
(1)X表示两次中所得的最小点数;
(2)Y表示两次所得点数之差的绝对值.
解:(1)一颗骰子抛两次,共有36种等可能的结果.X表示两次中所得的最小点数,则X的可能取值为1,2,3,4,5,6.由确定概率的古典方法得
P(X=1)=11/36,P(X=2)=9/36,P(X=3)=7/36
P(X=4)=5/36,P(X=5)=3/36,P(X=6)=1/36
将以上计算结果列表为
(2)因为Y表示两次所得点数之差的绝对值,所以1,的可能取值为0,1,2,3,4,5.而
P(Y=0)=6/36=1/6,P(Y=1)=10/36=5/18,P(Y=2)=8/36=2/9
P(Y=3)=6/36=1/6,P(Y=4)=4/36=1/9,P(Y=5)=2/36=1/18
将以上计算结果列表为
3口袋中有7个白球、3个黑球.
(1)每次从中任取一个不放回,求首次取出白球的取球次数X的概率分布列;
(2)如果取出的是黑球则不放回,而另外放入一个白球,此时X的概率分布列如何.
解:X为首次取到白球的取球次数,则X的可能取值为1,2,3,4.记Ai为“第i次取出的球为黑球”,i=1,2,…,10.
(1)由乘法公式可得
P(X=1)=P(1)=7/10
P(X=2)=P(A12)=P(A1)P(2|A1)=(3/10)×(7/9)=7/30
P(X=3)=P(A1A23)=(3/10)×(2/9)×(7/8)=7/120
P(X=4)=P(A1A2A34)=(3/10)×(2/9)×(1/8)×(7/7)=1/120
将以上计算结果列表为
(2)如果取出黑球不放回,而另外放入一个向球,则由乘法公式得
P(X=1)=P(1)=7/10
P(X=2)=P(A12)=(3/10)×(8/10)=6/25
P(X=3)=P(A1A23)=(3/10)×(2/10)×(9/10)=27/500
P(X=4)=P(A1A2A34)=(3/10)×(2/10)×(1/10)×(10/10)=3/500
将以上计算结果列表为
4有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以X表示所取到的白球数.
(1)试求X的概率分布列;
(2)取到的白球数不少于2个的概率是多少?
解:(1)记Ai为“取到第i个盒子”,i=1,2,3.由全概率公式得
将以上计算结果列表为
(2)P(X≥2)=P(X=2)+P(X=3)=1/3.
5掷一颗骰子4次,求点数6出现的次数的概率分布.
解:记X为掷4次中点数6出现的次数,则X的可能取值为0,1,2,3,4.由确定概率的古典方法得
P(X=0)=54/64=0.4823
P(X=4)=1/64=0.0008
将以上结果列表为
由以上的计算结果也可以看出:出现0次6点的可能性最大.
6从一副52张的扑克牌中任取5张,求其中黑桃张数的概率分布.
解:记X为取出的5张牌中黑桃的张数,则X的可能取值为0,1,2,3,4,5.将52张牌分成两类:一类为13张黑桃,另一类为39张除黑桃外的其他花色,则由抽样模型得
7一批产品共有100件,其中10件是不合格品.根据验收规则,从中任取5件产品进行质量检验,假如5件中无不合格品,则这批产品被接收,否则就要重新对这批产品逐个检验.
(1)试求5件中不合格品数X的分布列;
(2)需要对这批产品进行逐个检验的概率是多少?
解:(1)X的分布列为
计算结果列表略.
(2)“需要对这批产品进行逐个检验”则意味着“检验5个产品,至少有一个不合格品”,因此所求概率为
8设随机变量X的分布函数为
试求X的概率分布列及P(X<3),P(X≤3),P(X>1),P(X≥1).
解:X的概率分布列为
P(X<3)=P(X=0)+P(X=1)=1/3
P(X≤3)=1-P(X=6)=1/2
P(X>1)=P(X=3)+P(X=6)=2/3
P(X≥1)=1-P(X=0)=3/4
9设随机变量X的分布函数为
试求P(X<2),P(0<X≤3),P(2<X<2.5).
解:这里X是连续随机变量,所求概率分别为
P(X<2)=F(2)=ln2=0.6931
P(0<X≤3)=F(3)-F(0)=1
P(2<X<2.5)=F(2.5)-F(2)=ln2.5-ln2=0.2231
10若P(X≥x1)=1-a,P(X≤x2)=1-β,其中x1<x2试求P(x1≤X≤x2).
解:P(x1≤X≤x2)=1-P(X<x1)-P(X<x2)=1-α-β.
11从1,2,3,4,5五个数中任取三个,按大小排列记为x1<x2<x3,令X=x2,试求:
(1)X的分布函数;
(2)P(X<2)及P(X>4).
解:(1)因为X的分布列为
所以X的分布函数为
(2)P(X<2)=F(2-0)=0
P(X>4)=1-F(4)=1-1=0
12设随机变量X的密度函数为
试求X的分布函数.
解:由于密度函数p(X)在(-∞,+∞)上分为四段(如图2-2-2),所以其分布函数也要分四段设立,具体如下:
当x<-1时,
当-1≤x<0时,
当0≤x<1时,
图2-2-2
当x>1时,
综上所述,X的分布函数为
13如果X的密度函数为
试求P(X≤1.5).
解:因为密度函数P(x)的图形如图2-2-3.
图2-2-3
因此所求概率为
14设随机变量X的密度函数为
试求:
(1)系数A;
(2)X落在区间(0,π/4)内的概率.
解:(1)因为
由此解得A=1/2.
(2)所求概率为
15设连续随机变量X的分布函数为
试求:
(1)系数A;
(2)X落在区间(0.3,0.7)内的概率;
(3)X的密度函数.
解:(1)由F(x)的连续性,有
由此解得A=1.
(2)P(0.3<X<0.7)=F(0.7)-F(0.3)=0.72-0.32=0.4
(3)X的密度函数(如图2-2-4)为
图2-2-4
16学生完成一道作业的时间X是一个随机变量,单位为小时.它的密度函数为
(1)确定常数c;
(2)写出X的分布函数;
(3)试求在20分钟内完成一道作业的概率;
(4)试求10分钟以上完成一道作业的概率.
解:(1)因为
由此解得c=21.
(2)当x<0时,
当0≤x<0.5时,
当x>0.5时,
所以X的分布函数为
(3)所求概率为P(X≤1/3)=F(1/3)=7/27+1/18=17/54.
(4)所求概率为P(X>1/6)=1-F(1/6)=1-(7/216+1/72)=103/108.
17某加油站每周补给一次油,如果这个加油站每周的销售量(单位:千升)为一随机变量,其密度函数为
试问该油站的储油罐需要多大,才能把一周内断油的概率控制在5%以下?
解:记X为该油站每周的销售量,k为该油站储油罐的最大储油量.则由题意知:k应该满足P(X>k)≤0.05
这等价于P(X≤k)≥0.95,因此由
中解得k≥45.072(千升).所以可取k=46(千升)即可将一周内断油的概率控制在5%以下.
18设随机变量X和Y同分布,X的密度函数为
已知事件A={X>a}和B={Y>a}独立,且P(A∪B)=3/4,求常数a.
解:由同分布可得P(A)=P(B),从而
3/4=P(A∪B)=P(A)+P(B)-P(AB)=2P(A)-[P(A)]2
由此解得P(A)=0.5,进而由
解得
注:随机变量X与Y同分布,并不意味着X=Y,反之成立,即X=Y,则X与Y同分布.
19设连续随机变量x的密度函数p(x)是一个偶函数,F(x)为X的分布函数,求证对任意实数a>0,有
(1)
(2)P(|x|<a)=2F(a)-1
(3)P(|x|>a)=2[1-F(a)]
证:因为p(x)是一个偶函数,所以P(-x)=P(x),且从
可得
(1)在中令x=-t,则
所以
(2)P(|x|<a)=P(-a<X<a)=F(a)-F(-a)=F(a)-[1-F(a)]=2F(a)-1
(3)P(|x|>a)=P(X<-a)+P(X>a)=F(-a)+1-F(a)=1-F(a)+1-F(a)=2[1-F(a)]
二、随机变量的数学期望
1设离散型随机变量X的分布列为
试求E(X)和E(3X+5).
解:E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2
E(3X+5)=[3×(-2)+5]×0.4+(3×0+5)×0.3+(3×2+5)×0.3=4.4
2某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数X的分布列为
试求顾客在商店平均购买服装件数.
解:E(X)=1×0.33+2×0.31+3×0.13+4×0.09+5×0.04=1.9
3某地区一个月内发生重大交通事故数X服从如下分布
试求该地区发生重大交通事故的月平均数.
解:E(X)=1×0.362+2×0.216+3×0.087+4×0.026+5×0.006+6×0.002=1.201
4一海运货船的甲板上放着20个装有化学原料的圆桶,现已知其中有5桶被海水污染了.若从中随机抽取8桶,记X为8桶中被污染的桶数,试求X的分布列,并求E(X).
解:因为X的可能取值为0,1,2,…,5,且
将计算结果列表为
由此得E(X)=1×0.2554+2×0.3973+3×0.2384+4×0.0542+5×0.0036=2
5用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1,2,2,5,10(g);(乙)1,2,3,4,10(g);(丙)1,1,2,5,10(g),称重时只能使用一组砝码.问:当物品的质量为1g,2g,…,10g的概率是相同的,用哪一组砝码称重所用的平均砝码数最少?
解:分别用X,Y,Z表示用甲、乙、丙三组砝码称重时所用的砝码数.
(1)用甲组砝码称重时,1个砝码可称4种物品(1,2,5,10(g));2个砝码可称4种物品(3,4,6,7(g));3个砝码可称2种物品(8,9(g)).所以X的分布列为列为
因此平均所用砝码数为:E(X)=1×4/10+2×4/10+3×2/10=1.8.
(2)用乙组砝码称重时,1个砝码可称5种物品(1,2,3,4,10(g));2个砝码可称3种物品(5,6,7(g));3个砝码可称2种物品(8,9(g)).所以Y的分布列为
因此平均所用砝码数为:E(Y)=1×5/10+2×3/10+3×2/10=1.7.
(3)用丙组砝码称重时,1个砝码可称4种物品(1,2,5,10(g));2个砝码可称3种物品(3,6,7(g));3个砝码可称2种物品(4,8(g));4个砝码可称1种物品(9(g)).所以Z的分布列为
因此平均所用砝码数为:E(Z)=1×4/10+2×3/10十3×2/10+4×1/10=2.0.
所以用乙组砝码称重时,所用的平均砝码数最少.
6假设有十只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.
解:记Ai为“第i次取m的是合格品”,i=1,2,3.随机变量X为“取到合格品之前,已取出的不合格品数”.则
P(X=0)=P(A1)=8/10
P(X=1)=P(1A2)=(2/10)×(8/9)=8/45
P(X=2)=P(12A3)=(2/10)×(1/9)×(8/8)=1/45
上述三个概率组成一个分布列,其数学期望为E(X)=1×8/45+2×1/45=2/9
7对一批产品进行检查,如查到第a件全为合格品,就认为这批产品合格;若在前a件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可认为每次查到不合格品的概率都是p.问每批产品平均要查多少件?
解:设每批要查X件,记q=1-p,则X的分布列为
所以
8某人参加“答题秀”,一共有问题1和问题2两个问题.他可以自行决定回答这两个问题的顺序.如果他先回答一个问题,那么只有回答正确,他才被允许回答另一题.如果他有60%的把握答对问题1,而答对问题1将获得200元奖励;有80%的把握答对问题2,而答对问题2将获得100元奖励.问他应该先回答哪个问题,才能使获得奖励的期望值最大化?
解:记X为回答顺序为1,2时,所获得的奖励,则X的分布列为
由此得E(X)=168(元)
又记Y为回答顺序为2,1时,所获得的奖励,则Y的分布列为
由此得E(Y)=176(元)
因此应该先回答问题2,可以使获得的奖励的期望值最大.
9某人想用10000元投资于某股票,该股票当前的价格是2元/股.假设一年后该股票等可能的为1元/股和4元/股.而理财顾问给他的建议是:若期望一年后所拥有的股票市值达到最大,则现在就购买;若期望一年后所拥有的股票数量达到最大,则一年以后购买.试问理财顾问的建议是否正确?为什么?
解:如果现在就购买2元/股,则10000元可购买5000股.记X为一年后所拥右的股票市值X的分布列为
所以E(X)=12500元,比一年后购买(市值为10000元)大.
如果一年后购买,记Y为一年后所购股票数,则10000元等可能地购买10000/1=10000股或10000/4=2500股,所以Y的分布列为
由此得E(Y)=5000+1250=6250(股),比现在就购买(5000股)多.
因此,理财顾问的建议是正确的.
10保险公司的某险种规定:如果某个事件A在一年内发生了,则保险公司应付给投保户金额a元,而事件A在一年内发生的概率为p.如果保险公司向投保户收取的保费为ka,则问k为多少,才能使保险公司期望收益达到a的10%?
解:记X为保险公司的收益,则X的分布列为
所以保险公司的期望收益为E(X)=-ap+ka(1-p).由E(X)≥0.1a,即从-ap+ka(1-p)≥0.1a中解得k≥(0.1+p)/(1-p),所以取k=(0.1+p)/(1-p)即可满足要求.
注意:这里k是p的严格增函数,具体有
由此可见,若特定事件A发生的概率超过0.4时,再参加此种保险已无多大实际意义了.
11某厂推土机发生故障后的维修时间T是一个随机变量(单位:小时),其密度函数为
试求平均维修时间.
解:计算得
故其平均维修时间为50小时.
12某新产品在未来市场上的占有率X是仅在区间(0,1)上取值的随机变量,它的密度函数为
试求平均市场占有率.
解:这里平均市场占有率就是E(X).
13设随机变量X的密度函数如下,试求E(2X+5).
解:因为
所以E(2X+5)=7.
14设随机变量X的分布函数如下,试求E(X).
解:X的密度函数(如图2-2-6)为
图2-2-6
所以
15设随机变量X的密度函数为
如果E(X)=2/3,求a和b.
解:由
得:a+b/3=1①
又由
得:a/2+b/4=2/3②
联立①②,解得a=1/3,b=2.
16某工程队完成某项工程的时间X(单位:月)是一个随机变量,它的分布列为
(1)试求该工程队完成此项工程的平均月数;
(2)设该工程队所获利润为Y=50(13-X),单位为万元.试求工程队的平均利润;
(3)若该工程队调整安排,完成该项工程的时间X1(单位:月)的分布为
则其平均利润可增加多少?
解:(1)E(X)=10×0.4+11×0.3+12×0.2+13×0.1=11,该工程队完成此项工程平均需11个月.
(2)E(Y)=E[50(13-X)]=650-50×E(X)=650-550=100,该工程队所获平均利润为100万元.
(3)调整安排后,E(X1)=10×0.5+11×0.4+12×0.1=10.6,所以平均利润为E(Y1)=E[50(13-X1)]=650-50×10.6=120,由此得平均利润可增加120-100=20(万元).
17设随机变量X的概率密度函数为
对X独立重复观察4次,Y表示观察值大于π/3的次数,求Y2的数学期望.
解:因为事件“观察值大于π/3”可用{X>π/3}表示,从而
而Y的分布列为
所以
18设随机变量X的密度函数为
试求1/X2的数学期望.
解:计算得
19设X为仅取非负整数的离散随机变量,若其数学期望存在,证明:
(1)
(2)
证:(1)由于
存在,所以该级数绝对收敛,从而有
(2)
20设连续随机变量X的分布函数为F(x),且数学期望存在,证明:
证:
将第一个积分改写为二次积分,然后改变积分次序,得
第二个积分亦可改写为二次积分,然后改变积分次序,可得
这两个积分之和恰好是所要求证明的等式.
21设X为非负连续随机变量,若E(Xn)存在,试证明:
(1)
(2)
证:(1)因为X为非负连续随机变量,所以当x<0时,有F(x)=0.利用20题给出的公式得
(2)因为X为非负连续随机变量,所以Xn也是非负连续随机变量,因此利用(1)可得
令y=xn,则
三、随机变量的方差与标准差
1设随机变量X满足E(X)=Var(X)=λ,已知E[(X-1)(X-2)]=1,试求λ.
解:由E(X2)=Var(X)+[E(X)]2=λ+λ2,及题设条件
1=E[(X-1)(X-2)]=E[X2-3X+2]=E(X2)-3λ+2=λ+λ2-3λ+2
得λ2-2λ+1=0,从中解得λ=1.
2假设有10只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.
解:记X为取到合格品之前,已取出的不合格品数,则X的分布列为
由此得E(X)=2/9,E(X2)=4/15,Var(X)=4/15-(2/9)2=88/405=0.2173
3已知E(X)=-2,E(X2)=5,求Var(1-3X).
解:Var(1-3X)=9Var(X)=9[E(X2)-(E(X))2]=9[5-4]=9
4设P(X=0)=1-P(X=1),如果E(X)=3Var(X),求P(X=0).
解:记p=P(X=0),则P(X=1)=1-p,因为E(X)=1-p,Var(X)=p(1-p),所以由E(X)=3Var(X)得1-p=3p(1-p).
由此解得p=1/3或p=1.因为p=1导致X为单点分布,即X几乎处处为0,这无多大实际意义,故舍去.所以得P(X=0)=p=1/3.
5设随机变量X的分布函数为
试求Var(X).
解:X的密度函数为
所以
由此得Var(X)=E(X2)-[E(X)]2=7.5-1=6.5.
6设随机变量X的密度函数为
试求Var(3X+2).
解:因为
所以Var(X)=E(X2)-[E(X)]2=1/6,由此得Var(3X+2)=9Var(X)=1.5.
7设随机变量X的密度函数为
如果已知E(X)=0.5,试计算Var(X).
解:因为
①
②
联立①②,解得a=6,b=-6.由此得
所以Var(X)=E(X2)-[E(X)]2=3/10-1/4=0.05
8设随机变量X的分布函数为
试求E(X)和Var(X).
解:因为X为非负连续随机变量,所以利用习题2.2第21题,有
由此得Var(X)=1-π/4.
注:此题也可直接计算得
所以
9试证:对任意的常数c≠E(X),有Var(X)=E(X-E(X))2<E(X-c)2.
证:E(X-E(X))2=E[(X-c)-(E(X)-c)]2=E(X-c)2-(E(X)-c)2,由于c≠E(X),所以(E(X)-c)2>0,由此得Var(X)=E(X-E(X))2<E(X-c)2.
10设随机变量X仅在区间[a,b]上取值,试证:a≤E(X)≤b,Var(X)≤[(b-a)/2]2
证:仅对连续随机变量X加以证明.记p(x)为X的密度函数,因为
同理可证:E(X)≥a.由上题的结论知
注:此命题表明有界随机变量的数学期望和方差总是存在的.
11设随机变量X取值x1≤…≤xn的概率分别是
证明
证:仿上题有
12设g(x)为随机变量X取值的集合上的非负不减函数,且E(g(X))存在,证明:对任意的ε>0,有P(X>ε)≤E(g(X))/g(ε)
证:仅对连续随机变量X加以证明.记p(x)为X的密度函数,则
注:此题给出证明概率不等式的一种方法——两次放大:第一次放大被积函数;第二次放大积分区域.
13设X为非负随机变量,a>0.若E(eaX)存在,证明:对任意的x>0,有P(X≥x)≤E(eaX)/eaX.
证:因为当a>0时,g(x)=eax是非负不减函数,所以由上题即可得结论.
14已知正常成年男性每升血液中的白细胞数平均是7.3×109,标准差是0.7×109.试利用切比雪夫不等式估计每升血液中的白细胞数在5.2×109至9.4×109之间的概率的下界.
解:记X为正常成年男性每升血液中的白细胞数,由题设条件知
E(X)=7.3×109,σ(X)=0.7×109
所以由切比雪夫不等式得
四、常用离散分布
1一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率.
解:记X为取出的3件产品中的不合格品数,则X~b(3,0.1),所求概率为
P(X≤1)=P(X=0)+P(X=1)=0.93+3×0.1×0.92=0.972
2一条自动化生产线上产品的一级品率为0.8,现检查5件,求至少有2件一级品的概率.
解:记X为检查5件产品中的一级品数,则X~b(5,0.8),所求概率为
P(X≥2)=1-P(X=0)-P(X=1)=1-0.25-5×0.8×0.24=0.9933
3某射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.
解:记X为三次射击中命中10环的次数,则X~b(3,0.7).因为“所得的环数不少于29环”相当于“射击三次至少二次命中10环”,故所求概率为
P(X≥2)=P(X=2)+P(X=3)=3×0.72×0.3+0.73=0.784
4经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位顾客,问到时顾客来到餐厅而没有座位的概率是多少?
解:记X为预定的52位顾客中不来就餐的顾客数,则X~b(52,0.2).因为“顾客来到餐厅没有座位”相当于“52位顾客中最多1位顾客不来就餐”,所以所求概率为
P(X≤1)=P(X=0)+P(X=1)=0.852+52×0.851×0.2=0.0001279
5设随机变量X~b(n,p),已知E(X)=2.4,Var(X)=1.44,求两个参数n与p各为多少?
解:从np=E(X)=2.4和np(1-p)=Var(X)=1.44中解得n=6,p=0.4.
6设随机变量X服从二项分布b(2,p),随机变量Y服从二项分布b(4,p).若P(X≥1)=8/9,试求P(Y≥1).
解:从8/9=P(X≥1)=1-P(X=0)=1-(1-p)2中解得p=2/3.由此得
P(Y≥1)=1-P(Y=0)=1-(1-p)4=1-(1/3)4=80/81
7一批产品的不合格品率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:
(1)用二项分布作精确计算;
(2)用泊松分布作近似计算.
解:记X为抽取的40件产品中的不合格品数,则X~b(40,0.02).而“拒收”就相当于“X≥2”.
(1)拒收的概率为P(X≥2)=1-P(X=0)-P(X=1)=1-0.9840-40×0.9839×0.02=0.1905
(2)因为λ=40×0.02=0.8,所以用泊松分布作近似计算,可得近似值为P(X≥2)=1-P(X=0)-P(X=1)≈1-e-0.8-0.8×e-0.8=0.1912.可见近似值与精确值相差0.0007,近似效果较好.
8设X服从泊松分布,且已知P(X=1)=P(X=2),求P(X=4).
解:由P(X=1)=P(X=2)得λe-λ=λ2e-λ/2,从中解得λ=2,由此得
P(X=4)=λ4e-λ/(4!)=24e-2/(4!)=0.0902
9已知某商场一天来的顾客数X服从参数为λ的泊松分布,而每个来到商场的顾客购物的概率为p,证明:此商场一天内购物的顾客数服从参数为λp的泊松分布.
证:用Y表示商场一天内购物的顾客数,则由全概率公式知,对任意正整数k有
这表明:Y服从参数为λp的泊松分布.
10设一个人一年内患感冒的次数服从参数λ=5的泊松分布.现有某种预防感冒的药对75%的人有效(能将泊松分布的参数减少为λ=3),对另外的25%的人不起作用.如果某人服用了此药,一年内患了两次感冒,那么该药对他(她)有效的可能性是多少?
解:记事件A为“服用此药后,一年感冒两次”,事件B为“服用此药后有效”.因为
因此所求概率为
11有三个朋友去喝咖啡,他们决定用掷硬币的方式确定谁付账:每人掷一枚硬币,如果有人掷出的结果与其他两人不一样,那么由他付账;如果三个人掷出的结果是一样的,那么就重新掷,一直这样下去,直到确定了由谁来付账.求以下事件的概率:
(1)进行到了第2轮确定了由谁来付账;
(2)进行了3轮还没有确定付账人.
解:记X=所掷的轮数,则X~Ge(p),其中
1-p=P(重新掷)=P(出现三个正面或出现三个反面)=1/8+1/8=1/4
所以p=3/4.
(1)第2轮确定由谁来付账的概率为
P(X=2)=(1-p)p=(1/4)×(3/4)=3/16=0.1875
(2)进行了3轮还没有确定付账人的概率为
P(X>3)=1-P(X=1)-P(X=2)-P(X=3)=1-3/4-(1/4)×(3/4)-(1/4)2×(3/4)=1/64=0.0156
12从一个装有m个白球、n个黑球的袋中进行有返回地摸球,直到摸到白球时停止.试求取出黑球数的期望.
解:令X为取到白球时已取出的黑球数,则Y=X+1服从几何分布Ge(m/(n+m)),所以E(Y)=(n+m)/m=n/m+1,由此得E(X)=E(Y)-1=n/m.
13某种产品上的缺陷数X服从下列分布列:P(X=k)=1/2k+1,k=0,1,…,求此种产品上的平均缺陷数.
解:由题意知Y=X+1可看作服从几何分布Ge(1/2)的随机变量,所以E(Y)=2,由此得E(X)=E(Y)-1=1.
14设随机变量X的密度函数为
以Y表示对X的三次独立重复观察中事件{X≤1/2}出现的次数,试求P(Y=2).
解:因为Y~b(3,p),其中
所以
15某产品的不合格品率为0.1,每次随机抽取10件进行检验,若发现其中不合格品数多于1,就去调整设备.若检验员每天检验4次,试问每天平均要调整几次设备.
解:令X为每次检验中不合格品的个数,则X~b(10,0.1),而调整设备的概率为P(X>1)=0.2639.又记Y为每天调整设备的次数,则Y~b(4,0.2639),所以平均每天调整次数为E(Y)=4×0.2639=1.0556.
16一个系统由多个元件组成,各个元件是否正常工作是相互独立的,且各个元件正常工作的概率为p.若在系统中至少有一半的元件正常工作,那么整个系统就有效.问p取何值时,5个元件的系统比3个元件的系统更有可能有效?
解:记X为5个元件的系统中,正常工作的元件数;Y为3个元件的系统中,正常工作的元件数.则X~b(5,p),Y~b(3,p).
对X而言,系统有效的概率为
对Y而言,系统有效的概率为
根据题意,求满足下式的p:
P(X≥3)>P(Y≥2),即10p3(1-p)2+5p4(1-p)+p5>3p2(1-p)+p3.
上述不等式可简化为2p3-5p2+4p-1>0,或(p-1)2(2p-1)>0,或(2p-1)>0,从而有p>1/2.
17设随机变量X服从参数为λ的泊松分布,试证明:E(Xn)=λE[(X+1)n-1].利用此结果计算E(X3).
证:
由此得E(X3)=λE(X+1)2=λ2E(X+2)=λ2(λ+2)=λ3+2λ2
18令X(n,p)表示服从二项分布b(n,p)的随机变量,试证明:P(X(n,p)≤i)=1-P(X(n,1-p)≤n-i-1).
证:
19设随机变量X服从参数为p的几何分布,试证明:E(1/X)=-plnp/(1-p)
证:
20设随机变量X~b(n,p),试证明:
证:
五、常用连续分布
1设随机变量X服从区间(2,5)上的均匀分布,求对X进行3次独立观测中,至少有2次的观测值大于3的概率.
解:在一次观测中,观测值大于3的概率为
设Y为此种观测(X>3)的次数,则Y~b(3,2/3),由此得
P(Y≥2)=1-P(Y=0)-P(Y=1)=1-(1/3)3-3×(2/3)×(1/3)2=20/27
2在(0,1)上任取一点记为X,试求P(X2-3X/4+1/8≥0).
解:由x2-3x/4+1/8=0解得x1=0.25,x2=0.5.因为X~U(0,1),又因为二次函数y=x2-3x/4+1/8是开口向上的,故有
{X2-3X/4+1/8≥0}={0≤X≤0.25}∪{0.5≤X≤1}
所以
3设K服从(1,6)上的均匀分布,求方程x2+Kx+1=0有实根的概率.
解:方程x2+Kx+1=0有实根的充要条件是
{K2-4≥0}={K≤-2}∪{K≥2}
而K~U(1,6),因此所求概率为
4若随机变量K~N(µ,σ2),而方程x2+4x+K=0无实根的概率为0.5,试求µ.
解:方程x2+4x+K=0无实根等价于16-4K<0,所以由题意知0.5=P(16-4K<0)=P(K>4)=1-Φ[(4-µ)/σ],由此得知µ=4.
5设流经一个2Ω电阻上的电流I是一个随机变量,它均匀分布在9A至11A之间.试求此电阻上消耗的平均功率,其中功率W=2I2.
解:因为I~U(9,11),所以平均功率为
6某种圆盘的直径在区间(a,b)上服从均匀分布,试求此种圆盘的平均面积.
解:记X为圆盘的直径,则圆盘的面积为Y=πX2/4,所以平均面积为
7设某种商品每周的需求量X服从区间(10,30)上均匀分布,而商店进货数为区间(10,30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.
解:设进货量为a,则利润为
所以平均利润为
按照题意要求有
-7.5a2+350a+5250≥9280或-7.5a2+350a-4030≥0
解得,因此最少进货为21单位.
8统计调查表明,英格兰在1875年至1951年期间,在矿山发生10人或10人以上死亡的两次事故之间的时间T(以日计)服从均值为241的指数分布.试求P(50<T<100).
解:P(50<T<100)=F(100)-F(50)=e-50/241-e-100/241=0.1523
9若一次电话通话时间X(单位:min)服从参数为0.25的指数分布,试求一次通话的平均时间.
解:因为X~Exp(λ),其中λ=0.25.所以E(X)=1/λ=1/0.25=4min.
10某种设备的使用寿命X(以年计)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可赢利100元,而调换一台设备制造厂需花费300元.试求每台设备的平均利润.
解:令
即Y是一台设备在使用一年之内损坏的台数,显然Y~b(1,p),其中
因为每台设备的利润为Z=100-300Y,所以每台设备的平均利润为
E(Z)=100-300E(Y)=100-300×0.2212=33.64(元)
11设顾客在某银行的窗口等待服务的时间X(以min计)服从指数分布,其密度函数为
某顾客在窗口等待服务,若超过10min,他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试求P(Y≥1).
解:因为Y~b(5,p),其中p=P(X>10)=e-2,所以得
P(Y≥1)=1-P(Y=0)=1-(1-p)5=1-(1-e-2)5=0.5167
12某仪器装了3个独立工作的同型号电子元件,其寿命(单位:h)都服从同一指数分布,密度函数为
试求:此仪器在最初使用的200h内,至少有一个此种电子元件损坏的概率.
解:设Y为仪器在最初使用的200h内,损坏的元件个数,则Y~b(3,p),其中
所以至少有一个电子元件损坏的概率为
P(Y≥1)=1-P(Y=0)=1-(1-p)3=1-[1-(1-e-1/3)]3=1-e-1=0.6321
13设随机变量X的密度函数为
试求k,使得P(X>k)=0.5.
解:因为
由此解得k=ln2/λ.
14设随机变量X的密度函数为
若P(X≥k)=2/3,试求k的取值范围.
解:由题设条件2/3=P(X≥k)=1-P(X<k),知F(k)=1/3.又由p(x)得分布函数如下
F(x)的图形如图2-2-8所示.
图2-2-8
由此得1≤k≤3.
15写出以下正态分布的均值和标准差.
解:对p1(x)有
所以p1(x)的均值μ1=-2,标准差
对p2(x)有
所以p2(x)的均值μ2=0,标准差σ2=1/2
对p3(x)有
所以p3(x)的均值μ3=0,标准差
16某地区18岁女青年的血压X(收缩压,以mm-Hg计)服从N(110,122).试求该地区18岁女青年的血压在100至120的可能性有多大?
解:P(100<X<120)=Φ[(120-110)/12]-Φ[(100-110)/12]=Φ(5/6)-Φ(-5/6)=2Φ(5/6)-1=0.5950,其中Φ(5/6)=Φ(0.833)=0.7975是用内插法得到的.
17某地区成年男子的体重X(kg)服从正态分布N(μ,σ2).若已知P(X≤70)=0.5,P(X≤60)=0.25.
(1)求μ与σ各为多少?
(2)若在这个地区随机地选出5名成年男子,问其中至少有两人体重超过65kg的概率是多少?
解:(1)由0.5=P(X≤70)=Φ[(70-μ)/σ],知(70-μ)/σ=0
由此解得μ=70.又由
0.25=P(X≤60)=Φ[(60-70)/σ]=Φ(-10/σ)=1-Φ(10/σ)
即0.75=Φ(10/σ),查表知10/σ=0.675,由此解得σ=14.81.
(2)记Y为选出的5名成年男子中体重超过65kg的人数,则Y~b(5,p),其中
p=P(X>65)=Φ[(70-65)/14.81]=Φ(0.3376)=0.6324
所以“5名中至少有两人体重超过65kg”的概率为
P(Y≥2)=1-0.36765-5×0.36764×0.6324=0.94
18由某机器生产的螺栓的长度(cm)服从正态分布N(10.05,0.062),若规定长度在范围l0.05±0.12内为合格品,求螺栓不合格的概率.
解:记螺栓的长度为X,则
P(螺栓不合格)=1-P(10.05-0.12≤X≤10.05+0.12)=2-2Φ(0.12/0.06)=2-2×0.9772=0.0456
19某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从μ=72的正态分布,已知96分以上的人数占总数的2.3%,试求考生的成绩在60分至84分之间的概率.
解:记X为考生的外语成绩,由题设条件知X~N(72,σ2),其中σ未知,但由题设条件知0.023=P(X>96)=1-Φ[(96-72)/σ],即Φ(24/σ)=0.977
因此查表知24/σ=2,由此解得σ=12,从而得X~N(72,122),由此所求概率为
P(60<X<84)=2Φ(1)-1=2×0.8413-1=0.6826.
20设随机变量X~N(3,22),(1)求P(2<X≤5);(2)求P(|X|>2);(3)确定c使得P(X>c)=P(X<c).
解:(1)P(2<X≤5)=Φ(1)-Φ(-0.5)=Φ(1)-1+Φ(0.5)=0.5328.
(2)P(|X|>2)=P(X>2)+P(X<-2)=1-Φ(-0.5)+Φ(-2.5)=Φ(0.5)+1-Φ(2.5)=0.6977.
(3)因为1=P(X>c)+P(X<c),所以由题设条件P(X>c)=P(X<c)得P(X<c),进而有(c-3)/2=0.由此得c=3.
21设随机变量X~N(4,32),(1)求P(-2<X≤10);(2)求P(X>3);(3)设d满足P(X>d)≥0.9,问d至多为多少?
解:(1)P(-2<X≤10)=Φ(2)-Φ(-2)=2Φ(2)-1=2×0.9772-1=0.9544.
(2)P(X>3)=1-Φ(-1/3)=Φ(1/3)=0.6304.
(3)由0.9≤P(X>d)=Φ((4-d)/3)查表得(4-d)/3≥1.282,由此解得d≤0.154,故d至多取0.154.
22测量到某一目标的距离时,发生的随机误差X(m)具有密度函数
求在三次测量中,至少有一次误差的绝对值不超过30m的概率.
解:记Y为三次测量中误差的绝对值不超过30m的次数,则Y~b(3,p),其中p为“一次测量中误差的绝对值不超过30m”的概率,由X~N(20,402).可知
p=P(-30≤X≤30)=Φ(10/40)-Φ(-50/40)=Φ(0.25)-1+Φ(1.25)=0.4931
所以“三次测量中至少有一次误差的绝对值不超过30m”的概率为
P(Y≥1)=1-P(Y=0)=1-(1-p)3=1-0.50693=0.8698
23从甲地飞往乙地的航班,每天上午10:10起飞,飞行时间X服从均值是4h,标准差是20min的正态分布.
(1)该机在下午2:30以后到达乙地的概率是多少?
(2)该机在下午2:20以前到达乙地的概率是多少?
(3)该机在下午1:50至2:30之间到达乙地的概率是多少?
解:设时间单位为min,则X~N(240,202)
(1)所求概率为
P(X≥260)=1-Φ((260-240)/20)=1-Φ(1)=1-0.8413=0.1587
(2)所求概率为
P(X≤250)=Φ((250-240)/20)=Φ(0.5)=0.6915
(3)所求概率为
P(220≤X≤260)=2Φ(1)-1=2×0.8413-1=0.6826
24某单位招聘员工,共有10000人报考.假设考试成绩服从正态分布.且已知90分以上有359人,60分以下有1151人.现按考试成绩从高分到低分依次录用2500人,试问被录用者中最低分为多少?
解:记X为考试成绩,则X~N(μ,σ2),由频率估计概率知
0.0359=P(X>90)=1-Φ[(90-μ)/σ]
0.1151=P(X<60)=1-Φ[(60-μ)/σ]
上面两式可改写为
0.9641=Φ[(90-μ)/σ]
0.8849=Φ[(μ-60)/σ]
再查表得
(90-μ)/σ=1.8,(μ-60)/σ=1.2
由此解得μ=72,σ=10.设被录用者中最低分为k,则由
0.25=P(X≥k)=1-Φ[(k-72)/10],或0.75=Φ[(k-72)/10]
查表得(k-72)/10≥0.675,从中解得k≥78.75,因此取被录用者中最低分为78.75分即可.
25设随机变量X服从正态分布N(60,32),试求实数a,b,c,d使得X落在如下五个区间中的概率之比为7:24:38:24:7.
(-∞,a],(a,b],(b,c],(c,d],(d,+∞]
解:由题设条件知
P(X≤a)=0.07;P(X≤b)=0.31;P(X≤c)=0.69;P(X≤d)=0.93
所以
(1)由于P(X≤a)=Φ((a-60)/3)=0.07,即Φ((60-a)/3)=0.93,因此查表得(60-a)/3=1.48,由此得a=55.56.
(2)由于P(X≤b)=Φ((b-60)/3)=0.31,即Φ((60-b)/3)=0.69,因此查表得(60-b)/3=0.495由此得b=58.5.
(3)由P(X≤c)=0.69,查表得(c-60)/3=0.495,由此得c=61.5.
(4)由P(X≤d)=0.93,查表得(d-60)/3=1.48,由此得d=64.44.
26设随机变量X与Y均服从正态分布,X服从N(μ,42),Y服从N(μ,52)试比较以下p1和p2的大小.
p1=P{X≤μ-4},p2=P{Y≥μ+5}
解:因为
p1=P{X≤μ-4}=Φ(-1)=1-Φ(1)
p2=P{Y≥μ+5}=1-Φ(1)
所以p1与p2一样大小.
27设随机变量X服从正态分布N(0,σ2),若P(|X|>k)=0.1,试求P(X<k).
解:由题设条件知
0.9=P(-k≤X≤k)=Φ(k/σ)-Φ(-k/σ)=Φ(k/σ)-1
由此得Φ(k/σ)=0.95所以P(X<k)=Φ(k/σ)=0.95.
28设随机变量X服从正态分布N(μ,σ2),试问:随着σ的增大,概率P(|X-μ|<σ)是如何变化的?
解:因为
P(|X-μ|<σ)=P(-σ<X-μ<σ)=Φ(1)-Φ(-1)=0.6826
所以随着σ的增大,概率P(|X-μ|<σ)是不变的.
29设随机变量X服从参数为μ=160和σ的正态分布,若要求P(120<X≤200)≥0.90,允许σ最大为多少?
解:由题设条件0.90≤P(120<X≤200)=2Φ(40/σ)-1,得Φ(40/σ)≥0.95,从而查表得40/σ≥1.645,或σ≤24.32,这表明矿最大为24.32.
30设随机变量X~N(μ,σ2),求E|X-μ|
解:利用变换t=(x-μ)/σ及偶函数性质可得
31设X~N(0,σ2),证明:
证:在上题中令μ=0即可得结论.
32设随机变量X服从伽玛分布Ga(2,0.5),试求P(X<4).
解:伽玛分布Ga(2,0.5)的密度函数为
由于Γ(2)=1,因此所求概率为
33某地区漏缴税款的比率X服从参数a=2,b=9的贝塔分布,试求此比率小于10%的概率及平均漏缴税款的比率.
解:贝塔分布Be(2,9)的密度函数为
因为Γ(2+9)=10!,Γ(2)=1,Γ(9)=8!,所以Γ(2+9)/Γ(9)=90,因此
E(X)=a/(a+b)=2/11=0.1818.
34某班级学生中数学成绩不及格的比率X服从a=1,b=4的贝塔分布,试求P(X>E(X)).
解:贝塔分布Be(1,4)的密度函数为
且由E(X)=a/(a+b)=1/5=0.2,知
六、随机变量函数的分布
1已知离散随机变量X的分布列为
试求Y=X2与Z=|X|的分布列.
解:
2已知随机变量X的密度函数为
试求随机变量Y=g(X)的概率分布,其中
解:因为p(x)为偶函数,所以可得P(X<0)=P(X≥0)=0.5,由此得
P(Y=-1)=P(X<0)=P(X≥0)=P(Y=1)=0.5
所以Y的分布列为
3设随机变量X服从(-1,2)上的均匀分布,记
试求Y的分布列.
解:因为P(Y=-1)=P(X<0=1/3),P(Y=1)=P(X≥0)=2/3,所以Y的分布列为
4设X~U(0,1),试求1-X的分布.
解:X的密度函数为
因为y=g(x)=1-x在(0,1)上为严格单调减函数,其反函数为x=h(y)=1-y.且有h′(y)=-1,所以Y=1-X的密度函数为
这表明:当X~U(0,1)时,1-X与X同分布.
5设随机变量X服从(-π/2,π/2)上的均匀分布,求随机变量Y=cosX的密度函数pY(y).
解:X的密度函数为
由于X在(-π/2,π/2)内取值,所以Y=cosX的可能取值区间为(0,1).在Y的可能取值区间外,pY(y)=0.
当0<y<1时,使{Y≤y}的x取值范围为两个互不相交的区间Δ1和Δ2,其中Δ1=(-π/2,-arccosy),Δ2=(arccosy,π/2),如图2-2-9所示.
图2-2-9
故
在上式两端对y求导,得
即
6设圆的直径服从区间(0,1)上的均匀分布,求圆的面积的密度函数.
解:设圆的直径为X,则圆的面积Y=πX2/4,而X的密度函数为
因为y=g(X)=πX2/4在区间(0,1)上为严格单调增函数,其反函数为
且
所以圆面积Y=πX2/4的密度函数为
7设随机变量X服从区间(1,2)上的均匀分布,试求Y=e2X的密度函数.
解:X的密度函数为
由于X在(1,2)内取值,所以Y=e2X的可能取值区间为(e2,e4),且y=g(x)=e2x在区间(1,2)上为严格单调增函数,其反函数为x=h(y)=(lny)/2,且h′(y)=1/(2y),所以Y=e2X的密度函数为
8设随机变量X服从区间(0,2)上的均匀分布.
(1)求Y=X2的密度函数;
(2)P(Y<2).
解:X的密度函数为
(1)Y=X2的可能取值区间为(0,4).因为y=g(x)=x2在区间(0,2)上为严格单调增函数,其反函数为
且
所以Y=X2的密度函数为
(2)
9设随机变量X服从区间(-1,1)上的均匀分布,求:
(1)P(|x|>1/2)
(2)Y=|X|的密度函数.
解:(1)
(2)FY(y)=P(|X|≤y),当y<0时,FY(y)=0;当y≥1时,FY(y)=1;当0≤y<1时,
所以得
10设随机变量X服从(0,1)上的均匀分布,试求以下Y的密度函数:
(1)Y=-2lnX;
(2)Y=3X+1
(3)Y=eX
(4)Y=|lnX|
解:X的密度函数为
(1)因为Y的可能取值区间为(0,+∞),且y=g(x)=-2lnx在区间(0,1)上为严格单调减函数,其反函数为x=h(y)=e-0.5y,且h′(y)=-0.5e-0.5y.所以Y=-2lnX的密度函数为
(2)因为Y的可能取值区间为(1,4),且y=g(x)=3x+1在区间(0,1)上为严格单调增函数,其反函数为x=h(y)=(y-1)/3.且h′(y)=1/3,所以Y=3X+1的密度函数为
(3)因为Y的可能取值区间为(1,e),且y=g(x)=ex在区间(0,1)上为严格单调增函数,其反函数为x=h(y)=lny.且h′(y)=1/y所以Y=eX的密度函数为
(4)因为Y的可能取值区间为(0,+∞),且y=|lnx|在区间(0,1)上为严格单调减函数,其反函数为x=h(y)=e-y,且h′(y)=-e-y所以Y=|lnX|的密度函数为
11设随机变量X的密度函数为
试求下列随机变量的分布:
(1)Y1=3X;
(2)Y2=3-X;
(3)Y3=X2
解:(1)因为Y1的可能取值区间为(-3,3),且y=g(x)=3x在区间(-1,1)上为严格单调增函数,其反函数为x=h(y)=y/3,且h′(y)=1/3,所以Y1=3X的密度函数为
(2)因为Y2的可能取值区间为(2,4),且y=g(x)=3-x在区间(-1,1)上为严格单调减函数,其反函数为x=h(y)=3-y,且h′(y)=-1,所以Y2=3-X的密度函数为
(3)因为Y3的可能取值区间为(0,1),所以在区间(0,1)外,Y3的密度函数为pY(y)=0.而当0<y<1时,Y3的分布函数为
上式两边关于y求导,得
即
这是贝塔分布Be(3/2,1).
12设X~N(0,σ2),求Y=X2的分布.
解:因为Y=X2的可能取值区间为(0,+∞),所以当y≤0时,Y的密度函数为pY(y)=0而当y>0时,Y的分布函数为
对上式两边关于y求导,得
即
这是伽玛分布Ga(1/2,1/(2σ2))
13设X~N(μ,σ2),求Y=eX的密度函数、数学期望与方差.
解:因为Y=eX的可能取值范围为(0,+∞),且y=g(x)=ex为严格单调增函数,其反函数为x=h(y)=lny,及h′(y)=1/y,所以Y的密度函数为
这是对数正态分布LN(μ,σ2),为求其数学期望,采用线性变换t=(x-μ)/σ可得
上式最后一个等式成立是因为积分中的被积函数是N(σ,1)的密度函数之故.
为求Y的方差,先求E(Y2).施行相同的线性变换,可得
上式最后一个等式成立是因为积分中的被积函数是N(2σ,1)的密度函数之故.由此得
14设随机变量X服从标准正态分布N(0,1),试求以下Y的密度函数:
(1)Y=|X|;
(2)Y=2X2+1.
解:(1)Y=|X|的可能取值范围为(0,+∞),所以当y≤0时,Y的密度函数为pY(y)=0;当y>0时,Y的分布函数为
FY(y)=P(|X|≤y)=P(-y≤X≤y)=FX(y)-FX(-y)
对上式两端关于y求导得
所以Y的密度函数为
这个分布被称为半正态分布.
(2)Y=2X2+1的可能取值范围为(1,+∞),所以当y≤1时,Y的密度函数为pY(y)=0;当y>1时,Y的分布函数为
对上式两端关于y求导得
所以Y的密度函数为
15设随机变量X的密度函数为
试求以下Y的密度函数:
(1)Y=2X+1
(2)Y=eX
(3)Y=X2
解:(1)因为Y=2X+1的可能取值范围是(1,+∞).且y=g(x)=2x+1是严格单调增函数,其反函数为x=h(y)=(y-1)/2,及h′(y)=1/2,所以Y的密度函数为
(2)因为Y=eX的可能取值范围是(1,+∞).且y=g(x)=ex是严格单调增函数,其反函数为x=h(y)=lny,及h′(y)=1/y,所以Y的密度函数为
(3)因为Y=X2的可能取值范围是(0,+∞),且y=g(x)=x2在(0,+∞)上是严格单调增函数,其反函数为
及
所以Y的密度函数为
这是韦布尔分布的特例.一般韦布尔分布(记为W(m,η))的密度函数为
本题结论就是m=1/2,η=1时的韦布尔分布形(1/2,1).
16设随机变量X服从参数为2的指数分布,试证:Y1=e-2X和Y2=1-e-2X都服从区间(0,1)上的均匀分布.
证:因为X的密度函数为
又因为Y1的可能取值范围是(0,1),且y1=e-2x是严格单调减函数,其反函数为x=h(y1)=-0.5lny1,h′(y1)=-0.5/y1,所以Y1的密度函数为
即Y1~U(0,1)又由前面第4题,知Y2=1-e-2X=1-Y1也服从区间(0,1)上的均匀分布.结论得证.
17设X~LN(μ,σ2),试证:Y=lnX~N(μ,σ2)
证:因为X的密度函数为
又因为Y=lnX的可能取值范围为(-∞,+∞).且y=g(x)=lnx是区间(0,+∞)上的严格单调增函数,其反函数为x=h(y)=ey,h′(y)=ey.所以Y的密度函数为
这正是N(μ,σ2)的密度函数.
18设Y~LN(5,0.122),试求P(Y<188.7)
解:P(Y<188.7)=P(lnY<ln188.7)=Φ[(5.24-5)/0.12]=Φ(2)=0.9772
七、分布的其他特征数
1设随机变量X~U(a,b),对k=1,2,3,4,求μk=E(XK)与νk=E(X-E(X))k,进一步求此分布的偏度系数和峰度系数.
解:因为
所以
μ1=E(X)=(a+b)/2
μ2=E(X2)=(a2+ab+b2)/3
μ3=E(X3)=(a3+a2b+ab2+b3)/4
μ4=E(X4)=(a4+a3b+a2b2+ab3+b4)/5
ν1=E(X-E(X))=0
ν2=E(X-E(X))2=Var(X)=(a+b)2/12
ν3=μ3-3μ2μ1+2μ13=0
ν4=μ4-4μ3μ1+6μ2μ12-3μ14=(a+b)4/80
偏度系数和峰度系数分别为
注:上述βs,βk与a,b无关,这表明:任一均匀分布的偏度为0,峰度为-1.2.
2设随机变量X~U(0,a),求此分布的变异系数.
解:因为E(X)=a/2,Var(X)=a2/12,所以此分布的变异系数为
3求以下分布的中位数:
(1)区间(a,b)上的均匀分布;
(2)正态分布N(μ,σ2)
(3)对数正态分布LN(μ,σ2)
解:(1)从中解得x0.5=(a+b)/2
(2)记X~N(μ,σ2),由P(X≤μ)≈Φ[(μ-μ)/σ]=0.5,可得x0.5=μ
(3)记Y~LN(μ,σ2),令X=lnY,则X~N(μ,σ2)又记x0.5为X的中位数,y0.5为Y的中位数.则由(2)知x0.5=μ.即
0.5=P(X≤μ)=P(lnY≤μ)=P(Y≤eμ)
由此得y0.5=eμ
4设X~Ga(α,λ),对k=1,2,3,求μk=E(Xk)与vk=E(X-E(X))k
解:因为
所以
μ1=E(X)=α/λ,μ2=E(X2)=α(α+1)/λ2
μ3=E(X3)=α(α+1)(α+2)/λ3
v1=E[X-E(X)]=0,v2=Var(X)=α/λ2
v3=μ3-3μ2μ1+2μ13=2α/λ3
5设X~Exp(λ),对k=1,2,3,4,求μk=E(Xk)与vk=E(X-E(X))k进一步求此分布的变异系数、偏度系数和峰度系数.
解:因为
所以
μ1=E(X)=1/λ,μ2=E(X2)=2/λ2
μ3=E(X3)=6/λ3,μ4=E(X4)=24/λ4
ν1=E(X-E(X))=0,ν2=Var(X)=1/λ2
ν3=μ3-3μ2μ1+2μ13=2/λ3,ν4=μ4-4μ3μ1+6μ2μ12-3μ14=9/λ4
此分布的变异系数、偏度系数和峰度系数分别为
由此可见:指数分布的变异系数、偏度系数与峰度系数均与参数λ无关.它永远是正偏尖峰.
6设随机变量X服从正态分布N(10,9),试求x0.1和x0.9.
解:一般正态分布N(μ,σ2)的p分位数xp与标准正态分布的p分位数up,间满足关系式:xp=μ+σ×up.所以
x0.1=10+3u0.1=10+3×(-1.282)=6.154
x0.9=10+3u0.9=10+3×1.282=13.846
7设随机变量X服从双参数韦布尔分布,其分布函数为
其中η>0,m>0.试写出该分布的p分位数xp的表达式,且求出当m=1.5,η=1000时的x0.1,x0.5,x0.8的值.
解:因为p分位数xp满足
解之得
xp=η[-ln(1-p)]1/m
将m=1.5,η=1000代入上式,可得
x0.1=1000[-ln0.9]1/1.5=223.08
x0.5=1000[-ln0.5]1/1.5=783.22
x0.8=1000[-ln0.2]1/1.5=1373.36
8自由度为2的χ2分布的密度函数为
试求出其分布函数及分位数x0.1,x0.5,x0.8.
解:此分布的分布函数F(x)为:当x≤0时,F(x)=0;当x>0时,有
所此分布的p分位数xp满足:
从中解得xp=-2ln(1-p).由此得x0.1=-2ln0.9=0.211;x0.5=-2ln0.5=1.386;x0.8=-2ln0.2=3.219.
9设随机变量X的密度函数p(x)关于c点是对称的,且E(X)存在,试证:
(1)这个对称中心c既是均值又是中位数,即E(X)=x0.5=c
(2)如果c=0,则xp=-x1-p
证:(1)由p(x)关于c点对称可知:p(c+x)=p(c-x),-∞<x<+∞,因此
所以得E(X)=c,又由
所以2c-x0.5=x0.5,由此得x0.5=c
(2)当c=0时,有
又由F(-xp)=1-p即-xp=x1-p
由此得结论.
10试证随机变量X的偏度系数与峰度系数对位移和改变比例尺是不变的,即对任意的实数a,b(b≠0),Y=a+bX与X有相同的偏度系数与峰度系数.
解:因为E(Y)=E[a+bX]=a+bE(X),所以
即Y与X有相同的偏度系数.又因为
所以Y与X有相同的峰度系数.
11设某项维修时间T(单位:分钟)服从对数正态分布LN(μ,σ2)
(1)求p分位数tp;
(2)若μ=4.1271,求该分布的中位数;
(3)若μ=4.1271,σ=1.0364,求完成95%维修任务的时间.
解:因为T~LN(μ,σ2),所以X=lnT~N(μ,σ2)记xp为N(μ,σ2)的p分位数,up为N(0,1)的p分位数,则由p=P(X≤xp)=Φ[(xp-μ)/σ]=Φ(up),知xp=μ+σ·up
(1)因为
所以
(2)由本节习题3(3)知:t0.5=e4.1271=62
(3)因为u0.95=1.645,所以当μ=4.1271,σ=1.0364时.完成95%的维修任务的时间t0.95,为
t0.95=exp{4.1271+1.0364×1.645}=314
12某种绝缘材料的使用寿命T(单位:小时)服从对数正态分布LN(μ,σ2)若已知分位数t0.2=5000小时,t0.8=65000小时,求μ和σ.
解:由上一题知对数正态分布LN(μ,σ2)的平p分位数为
tp=exp{μ+σup}
其中up为标准正态分布N(0,1)的p分位数,所以根据题意有
5000=t0.2=exp{μ+σu0.2}
65000=t0.8=exp{μ+σu0.8}
将u0.2=-0.845,u0.8=0.845代入上面两式,可解得μ=9.799,σ=1.527
13某厂决定按过去生产状况对月生产额最高的5%的工人发放高产奖.已知过去每人每月生产额X(单位:kg)服从正态分布N(4000,602),试问高产奖发放标准应把生产额定为多少?
解:根据题意知,求满足P(X>k)=0.05的k,即k=x0.95其中x0.95,为分布N(4000,602)的95%分位数.又记up为标准正态分布N(0,1)的p分位数,则由xp=μ+σup及u0.95=1.645可得x0.95=4000+60×1.645=4098.7
因此可将高产奖发放标准定在生产额为4099kg.