§2 曲面面积与第一型曲面积分

与上节的情形类似,我们先讨论这样一个问题:怎样计算由不均匀材料制成的曲面片的质量?设这曲面片S在点Q=(x,y,z)处的面密度为ρ(Q)[2].我们把曲面片S分成若干小曲面块

把曲面块Sj的直径(即Sj上任意两点距离之上确界)记为dj,并记

将曲面块Sj的面积记为σ(sj),在每一块Sj上任意选取一点Qj,然后作和数

让d→O,和数(2.1)的极限就应该表示曲面片S的质量.

从上面例子的讨论可以引出第一型曲面积分的概念.但在叙述正式的定义之前,我们还需要弄清楚曲面面积的含义.——曲面面积的概念并不像乍一想来那么简单,这也许有点出人意料.

2.a曲面面积

我们曾把曲线的弧长定义为内接折线长度的上确界.以前,人们也曾模糊地认为,可以把曲面面积定义为内接折面面积的上确界。然而,上世纪末德国数学家许瓦茨(H.A.Schwarz)举出了一个反例,说明即使像直圆柱面这样简单的曲面,也可以具有面积任意大的内接折面,——内接折面面积的上确界是+∞!因此,我们不能把曲面面积定义为内接折面面积的上确界.

我们将许瓦茨的例子稍作改变,以便更直观地用几何方式说明问题.

考查一个半径为R高为H的直圆柱(为了叙述方便,我们认为这直圆柱是竖直放置的——其母线垂直于水平面).取充分大的自然数m,作内接于圆柱的正2m棱柱八下面,我们从P的侧面出发,作一串更接近于圆柱侧面S的内接折面.设ABB1 A1是P的一个侧面矩形.过矩形ABB1A1的中心D,作这矩形面的垂线,交这矩形所截的较小的那一段圆柱面于C.用直线段联结AC,BC,B1C,A1C.我们从矩形面ABB1A1出发,得到了由四个三角形面组成的内接于圆柱侧面的折面AB1A1C(图15-1).请注意,具有水平边的两三角形面积之和大于

把AA1的中点记为A2,BB1的中点记为B2,对矩形ABB2A2和A1B1B2A2重复上面的做法,得到ABB2A2C和A1B1B2A2C2.将这两块拼起来代替ABB1A1C.我们看到:具有水平边的四个三角形面积之和大于

图15-1

继续上面所说的手续,在对P的每一侧面做了n次对分之后,我们得到内接于圆柱面的一个折面,这折面的具有水平边的各三角形的面积之和大于

对于任意取定的m,只要n充分大,所作的内接折面的面积可以大于预先给定的任何正数.

读者已经注意到,随着n越来越大,所作折面中具有水平边的各三角形面与圆柱面的切平面的夹角也越来越大.这正是问题的症结所在.为了合理地定义曲面面积,就应要求逼近曲面的各平面小块趋于与曲面切面平行的位置.从这分析得到启发,我们作出如下的定义:

设S是一块连续可微曲面,它在每一点有确定的切平面.用分段连续可微的曲线将S分成若干小块:

——我们把S的这样一个分割记为π,并约定记

这里diam Sj表示集合Sj的直径.在所分割的每一小块Sj中任取一点Q,过Qj作S的切平面Tj.将Sj垂直投影于上,得到Tj上的一块平面区域.这平面区域的面积记为τ(Sj).考查和数

曲面块S的面积σ(S)就定义为

下面推导曲面面积的计算公式.先介绍简单曲面、正则曲面等概念.

设D是R2中的一个区域,向量值函数r(u,υ)在D上连续,曲面S的参数方程为

如果映射r(u,υ)是单一对应,那么我们就说S是简单曲面.

设D是R2中的一个区域,曲面S的参数方程为

如果r(u,υ)是连续可微映射并且满足条件

那么我们就说S是正则曲面.

我们来推导计算正则简单曲面面积的公式.设正则简单曲面S的参数方程为

用参数曲线网

把曲面S分成小块.每一小块在切平面上的投影的面积可以近似地表示为(参看图15-2):

图15-2

于是

由此得到

这就是简单正则曲面面积的计算公式.

我们考查这样的情形:S只是分块正则的曲面,而且可以有重点.如果能够把S剖分成若干块正则简单曲面,那么就可以分块计算面积,然后再相加.如果这时S仍有统一的参数表示:

那么仍有同样形式的计算面积的公式:

下面,我们把曲面面积的计算公式改写为几种形式,以便于以后引用.

第一种形式因为

其中

所以

第二种形式利用恒等关系

可得

我们回忆起

——这里E, F和G是曲面第一基本形式的系数.于是,又得到

我们看到:曲面的面积完全由这曲面的第一基本形式决定.

至于显式表示的曲面

它可以看作参数曲面的一种特殊形式:

计算得

因而有

这里

2.b第一型曲面积分

定义 设S是一张可求面积的曲面,函数f(x, y,z)在S上有定义.把S分割为有限块可求面积的小曲面块

(我们把这样一个分割记为π,并记

这里diamSj表示曲面块Sj的直径.)在每一小块曲面Sj上任意选取一点

然后作和数

当|π|→0时和数(2.3)的极限就称为函数f沿曲面S的第一型曲面积分,记为

读者容易看出:第一型曲面积分作为和数的极限,应该具有线性及可加性等性质.

以下推导第一型曲面积分的计算公式.基本的假设是:

(1)S是正则简单曲面,它的参数方程为

——其中D是一个有界闭区域;

(2)函数f(x, y,z)在S上连续.

由于复合函数f(r(u,υ))在D上的一致连续性,对任意ε>0,可以作D的充分细的分割,使得在所分成的每一闭子区域Dj上有:

在每一Dj上任意选取一点(uj,υj),记

又记

我们来考查和数

这里为书写简便引入记号:

将和数(2.4)与下面的积分J比较:

我们看到

这证明了

在所设条件下,我们推导出第一型曲面积分的计算公式:

其中

还可以考查这样的情形:S只是分块正则曲面.对这情形,如果能够把S剖分成若干块正则简单曲面,那么就可以分块用上面的公式计算,然后再相加.如果这时S仍有统一的参数表示:

那么仍有同样形式的计算公式

2.c例题

例1 设S是球面

试计算S的面积σ(s).

解 我们引入球面的参数方程

这里

计算得

所求的面积为

例2 试计算球面

被围在柱面

之内的那一部分的面积.

解 由于对称性,所求的面积为其在第一卦限内的部分的4倍.仍用例1中的参数表示,我们把所求的面积表示为

为确定积分区域Δ,把球面的参数表示代入不等式

这样得到

我们看到:(θ,ψ)∈Δ应满足这样的条件:

由此确定

所求的面积为

例3 试计算双曲抛物面z=x y被围在圆柱面x2+y2=a2内的那一部分的面积.

解 计算得

于是

换极坐标计算得到

例4 问以下两积分相差多少:

这里

解 根据曲面积分的定义,很容易求出第一个积分

利用对称性可以简化第二个积分的计算:

这里的P1是P在第一卦限的那一部分,这部分曲面可以用显式方程表示为

计算得

于是得到

直接计算得

我们得到

因而

例5 试计算积分

这里S是一段螺旋面:

解 直接计算得到

因而

例6 试计算积分

其中S是球面x2+y2+z2=a2

解 引入球面的参数表示当然可以进行计算(请读者自己练习),但利用对称性可以几乎不进行计算直接得出结果·事实上,我们有

所以