第一节 毕达哥拉斯及其学派

毕达哥拉斯(Pythagoras,约公元前570—前499年)出生于小亚细亚沿岸希腊人建立的殖民城邦萨摩斯岛。40岁时因为不堪忍受僭主的残暴统治,移居到意大利南部城邦克罗顿,在那里建立了一个从事宗教、政治和学术活动的盟会组织,盟会成员严守宗派秘密的程度令人吃惊。在受到当地政治势力屡次迫害后,毕达哥拉斯迁往迈达朋托。他的弟子们的活动一直延续到公元前5世纪中叶。如果用最简单的语言来概括毕达哥拉斯学派美学的内容的话,那就是数的和谐。

一 数的和谐

原始社会进入奴隶社会后,哲学家们开始用自己的思维结构来代替原始社会的意识形态——神话。他们普遍企图寻找一种统摄世界万物的原则或元素,以便认识和掌握它们。在当时的经济生活中,随着产品交换的产生,数的作用得到增强。毕达哥拉斯学派大多是数学家,他们把数(arithmos)当作万物的本原与他们对数的崇拜和神化有关。

从前人们不能把数同用数来计算的事物本身区分开来。毕达哥拉斯学派发现,数绝对不是事物本身,事物是流动和变化的,而数的运算规则永远是一样的。这个发现令他们惊讶不已。数开始被神化,毕达哥拉斯学派直接宣称数是神,神首先是数。毕达哥拉斯学派的数本原说带有神秘色彩,和神话很接近,然而毕竟是对世界的形而上学的哲学思考。毕达哥拉斯是第一个使用“哲学”(爱智)这个术语的人。

为了理解数本原说,最好不要从我们现代关于数的概念出发,而要直接依据毕达哥拉斯学派自己的论述。该学派成员菲罗劳斯(Philolaos)写道:“由此可见,万物既不仅仅由一种有限构成,又不仅仅由一种无限构成,显然,世界结构和其中的一切都是由无限和有限的结合而形成的,明显的例证是在现实的田野中所看到的情景:田野中由界线(即田塍)组成的一些部分限定了地段,由界线和界线以外无限的地段组成的另一些部分既限定又不限定地段,而仅仅由无限的空间组成的那些部分则是无限的。”第尔斯编、克兰茨修订:《苏格拉底以前的哲学家残篇》,第44章B部分第2则残篇。简注为DK44B2,以下用简注。

这种有限和无限的结合就是毕达哥拉斯学派所理解的数,它不完全等同于现代科学关于数的抽象概念。无限是不能够被认识的,有限对无限作出限定,被限定的事物可以被认识。数具有认识论意义,它对某个事物作出规定,使它区别于其他事物,从而能被人的意识和思维所掌握。数是事物生成的原则,是事物的组织原则。按照苏格拉底以前的哲学家的说法,数是事物的灵魂。数是一种创造力和生成力。

菲罗劳斯问道:有限和无限是如此不同,它们怎样才能结合在一起形成数呢?它们应该处在什么关系中呢?答案是:它们应该处在和谐的关系中。所谓和谐,指一个事物发展到“真”的地步,即它以某种形式确定了自身的界限、形状和尺寸等,从无限的背景中剥离出来。和谐是一种结构,数的结构。洛谢夫(A. F. Losev):《希腊罗马美学史》第1卷,莫斯科1963年版,第270页。它使有限和无限相同一,使事物获得明确的规定性。和谐是从数本原说中自然而然地产生出来的。

毕达哥拉斯学派用数的和谐来解释宇宙的构成,创立了宇宙美学理论。宇宙(cosmos)的原意是“秩序”,赫俄西德在《神谱》中就涉及到宇宙(秩序)和混乱的区别。在希腊美学中,宇宙是最重要的审美对象。早期希腊哲学家阿那克萨戈拉(Anaxagoras,约公元前500—前428年)甚至认为,人的生活目的就是观照宇宙的秩序。在某些意义上可以说早期希腊美学就是宇宙美学或宇宙学美学。毕达哥拉斯学派宇宙学美学理论把数学、音乐和天文学结合起来,其主要内容是:数是宇宙的本原,宇宙内的各个天体处在数的和谐中。太阳和地球的距离是月亮和地球的距离的两倍,金星和地球的距离是月亮和地球的距离的三倍。每个个别的天体也都处在一定的比率中。天体的运行是和谐的,距离越大的天体运动越快,并发出高昂的音调;距离越小的天体运动越慢,并发出浑厚的音调。和距离成比率的音调组成和谐的声音,这就是宇宙谐音。可以听到、可以看到、可以触摸的宇宙,总之,具体可感的宇宙是最高的美。对宇宙美的观照是希腊美学的一个重要特点。希腊思维(无论是唯物主义还是唯心主义)具有静观性,因为它认可现有的存在,而不要求对存在作根本的改造。

和谐也适用于精神生活和物质生活领域。和谐更适用于艺术。在毕达哥拉斯学派的音乐理论中,和谐具有最重要的意义。高低长短不同的音调,按照某种数的比例组成音乐的和谐。

毕达哥拉斯学派的数不仅具有本体论和认识论意义,而且具有审美意义。从他们对数的理解中,产生出希腊美学一个极其重要的特征。在毕达哥拉斯学派看来,“一切事物的形状都具有几何结构,几何结构则与数字相对应:1是点,2是线,3是面,4是体。世界生成过程是由点产生出线,由线产生出面,由面产生出体,从体产生出可感形体,产生出水、火、气、土四种元素。”赵敦华:《西方哲学通史》第1卷,北京大学出版社1996年版,第19页。认为毕达哥拉斯学派从几何结构和几何形体的角度来理解数、理解世界,对希腊美学具有不可忽视的意义:它从一个方面说明了希腊美学的结构性、形体性、造型性的特征。审美对象不仅是可以看到、可以触摸的,而且是造型明确的、几何形状固定的,这一切是由数来安排的。甚至光和色在毕达哥拉斯学派看来也是造型的、有三维形体的,或者至少和三维形体有关系。

二 艺术中的比例

早期希腊美学对艺术(technē)有三种理解:1.人类有目的的活动。从词源学上看,technē也指“产生”,即一种合目的的行为。举凡盖房造船、驯养动物、读书写字、种植、纺织、医疗、炼金、治理国家、军事活动以至魔法巫术都是艺术。艺术等同于手工艺,有劳动和管理经验的人往往被看作为诗人。这种传统是如此根深蒂固,直至公元前1世纪贺拉斯在《诗艺》中仍然把安菲翁当作诗人,和荷马一起加以颂扬。安菲翁没有写过诗,但是他演奏竖琴,感动顽石自动筑成忒拜城墙。2.科学。算术、几何是计算艺术。此外还有医学、动物学、占卜术等。3.现代涵义上的艺术。

毕达哥拉斯学派对美学的另一贡献是从和谐的比例的角度,探讨了现代涵义上的艺术问题。和谐的比例的审美本质在于,它说明了部分和整体以及统一的整体中部分与部分之间的关系。在这种关系中,一个部分和其他部分尽管有差异,但是它们仍然保持着统一的结构。西方艺术史早就确定,希腊雕像中的肚脐眼是按照黄金分割的规律划分人的整个身高的一个点。黄金分割指这样的比例:把一条线分成两段,长的一段和整条线之比等于短的一段和长的一段之比。就一个人的整个身高而言,从肚脐眼到脚底是下段,从肚脐眼到头顶是上段。身高与下段之比,等于下段与上段之比。就上段而言,从肚脐眼到颈是长段,从颈到头顶是短段。上段与长段之比,等于长段与短段之比。仅就下段而言,膝是黄金分割的一个点。黄金分割的理论据说是由毕达哥拉斯学派提出来的,它然后在柏拉图那里得到运用。文艺复兴时期这种“神的比例”正是以毕达哥拉斯和柏拉图的面貌出现的。对于毕达哥拉斯学派的比例学说,2世纪怀疑论者塞克都斯·恩披里柯作过一个总的说明:“没有比例任何一门艺术都不会存在,而比例在于数中,因此,一切艺术都借助数而产生……于是,在雕塑中存在着某种比例,就像在绘画中一样;由于遵照比例,艺术作品获得正确的式样,它们的每一种因素都达到协调。一般说来,每门艺术都是由理解所组成的系统,这个系统是数。因此,‘一切模仿数’,也就是说,一切模仿与构成万物的数相同的判断理性,这种说法是恰当的。这就是毕达哥拉斯学派的主张。”恩披里柯:《驳数理学家》,第7卷第106节。

公元前5世纪希腊著名的雕塑家和艺术理论家波利克里托(Polyclitus)写过关于雕像中数的比例的著作《法规》(Canon),他的雕像“持矛者”也被称作“法规”。《法规》之所以重要,因为它是早期希腊美学中罕见的纯艺术分析的范例。它仅仅从形式方面确定雕塑的结构,即整体和各部分之间的比例关系。而希腊美学在首次确定艺术结构时,实际上确定的是人体的结构。

波利克里托是当时惟一从自己的艺术实践中总结出艺术理论的人。有的研究者把他说成是毕达哥拉斯学派的门徒,即使这种说法有商榷的余地,然而可以肯定的是,波利克里托的理论和毕达哥拉斯学派的比例学说有着密切的关系,而且,流传下来的《法规》残篇和有关“法规”雕像的情况最早见诸毕达哥拉斯学派的记载。菲隆(Philon)写道:“许多人在制作同样大小的工具时,利用同样的结构、同样的木材和数量相同、重量不变的铁,结果,他们制作的工具中有一些能被投掷得远,并且打击有力,而另一些则大为逊色。问其原因,他们不能回答。因此,为了将来能够回答,雕塑家波利克里托的名言是合适的:‘(艺术作品的)成就产生于许多数的关系,而且,任何一个细枝末节都会破坏它。’”DK40B2.可见,同一门类的艺术虽然由同样的材料制成,然而形式(“许多数的关系”)上的细微差异会使它们产生迥然不同的效果。

波利克里托在《法规》中就论述了人体的各种比例关系。他按照自己的学说从事雕塑创作,十分注意手指和手指、手指和手掌、手掌和肘、肘和手臂的比例,以及各部分和整体的比例。波利克里托的法规就是毕达哥拉斯学派的数。希腊雕塑的特点是凝重、丰厚,具有特别强烈的体积感。另外,毕达哥拉斯学派对比例的强调并不是机械的、刻板的公式。他们特别看重的是比例关系中动态的韵律感,就像天体运动一样。波利克里托的“持矛者”姿态平稳放松,一只手握矛,另一只手下垂,身体重量由一条腿承担,另一条腿向后方斜放。在保持均衡美的同时,体现出一种韵律感。这种律动在米隆“掷铁饼者”的瞬间爆发力中尤其明显。

三 毕达哥拉斯学派美学的影响

毕达哥拉斯学派关于数的学说虽然没有达到范畴的辩证法,但是已经达到数的辩证法,它在整个希腊罗马美学中起到重要作用,希腊罗马美学具有数学性。赫拉克利特的“尺度”具有数的痕迹,原子论者留基波和德谟克利特是毕达哥拉斯的学生。柏拉图从数的角度论述宇宙的构成和美的问题。新毕达哥拉斯学派存在于公元前2—公元2世纪。普洛丁的《九章集》中有一篇论文叫《论数》。扬布里柯的《算术神学》阐述了毕达哥拉斯学派对前10位数的理解。

毕达哥拉斯学派的数作为确定界边的元素,是本体秩序的表述,它们使得造型性成为希腊美学的重要特征。18世纪和19世纪上半叶西方学者多次论述了希腊美学的这种特征。雕塑是希腊艺术最杰出的成就。“在这里,雕塑不仅仅被看作为一种特殊的艺术,而且被看作为希腊艺术、文学、哲学和科学各个领域中创造艺术形象的共同方法。”“可以直接地说,在希腊没有一种文化领域不以某种程度表现出这种造型性。”洛谢夫:《希腊罗马美学史》第1卷,第50页。连数学和天文学这样的学科,在希腊人那里也具有明显的形体性。希腊数学几乎总是几何学,尤其是立体几何学。最能说明希腊美学的造型性特征的是毕达哥拉斯的一则残篇:“毕达哥拉斯说,有五种形体,它们也被称作为数学形体:由六面体产生土,由四面体(即锥体——引者注)产生火,由八面体产生气,由二十面体产生水,由十二面体产生宇宙的充填物(即以太)。”DK58A15.这种观点对希腊美学产生很大影响。恩培多克勒把土设想为六面体,把火设想为四面体,他用这些元素表明世界的几何形体结构。组成事物的元素处在合乎比例的相互关系中,就产生和谐与美。在数中宇宙表现出一种有序的关系。

由于把世界及其万物看作为明确的几何形体,因此,与几何形体的结构有关的审美原则在希腊美学中占有特别重要的地位。这些审美原则包括对称、比例、尺度、和谐、均等、秩序等。毕达哥拉斯学派认为身体的美在于各部分的对称。希腊雕塑和神庙采用明显的对称形式,作品按照中心点或中轴线展开。对称在以后的艺术、比如在文艺复兴绘画中仍然起作用,但是已经不那么直接了。文艺复兴绘画描绘了光、色和地平线,并不遵循原始的对称规律。

毕达哥拉斯学派的美学还对科学研究产生了巨大影响。毕达哥拉斯发现弦长成一定比例时能发出和谐的声音,20世纪德国科学家、量子力学的创始人之一海森堡把这一发现说成是“人类历史上的一个真正重大的发现”。毕达哥拉斯进而用和谐的观点解释宇宙的构成和宇宙的美,乐器弦上的节奏就是横贯全部宇宙的和谐的象征。1—2世纪希腊天文学家托勒密和十五六世纪波兰天文学家哥白尼都研究过毕达哥拉斯的和谐论,从宇宙和谐的观念来构筑自己的体系。在哥白尼以后,天文学上最大的成就是开普勒发现的行星运动定律,即开普勒定律。从自己的早期研究开始,开普勒就坚信毕达哥拉斯的宇宙和谐观念。他在《宇宙的秘密》一书中,运用毕达哥拉斯的方法检验哥白尼理论中行星轨道数学上的和谐关系。22年后,他在《宇宙的和谐》一书中发表了开普勒第三定律,即行星运动的“和谐法则”,它阐述了行星运动的周期和距离的关系。这本书的书名就表明,和谐是开普勒终生探索的目标。美国科学家、诺贝尔物理奖获得者钱德拉塞卡在《莎士比亚、牛顿和贝多芬——不同的创造模式》一书中指出:“开普勒一定受到了毕达哥拉斯美的概念的影响,当他把行星绕太阳的转动和一根振动弦进行比较时,他发现,不同行星的轨道有如天体音乐一般奏出了和谐的和声。开普勒深深感激上帝为他保留了这份发现,使他能够通过他的行星运动定律,得到了一种最高的美的联系。”钱德拉塞卡:《莎士比亚、牛顿和贝多芬——不同的创造模式》,湖南科学技术出版社,第61页。