第四章 安静与缓慢的时间

如果说,“历史否认者”怀疑进化事实,是由于对生物学的无知,那么,认为世界开始于1万年之内的那些人,则比无知更加糟糕——他们自欺欺人到了有悖常理的程度。他们不仅仅否认了生物学的事实,还否认了物理、地理、宇宙、考古、历史以及化学等诸多方面的事实。本章将阐明我们是如何知道岩石及其所含化石的年龄的。它展示的证据表明,在地球上活动的生物,其时间尺度不是用数千年来衡量的,而是用数十亿年来计量的。

要记住,进化科学家处在一位大侦探的位置——罪案发生后,大侦探才来到犯罪现场。为了确定事件发生的时间,我们要寻找时变过程(time-dependent processes)留下来的线索——也就是广义上的“钟表”。在调查一件谋杀案时,侦探需要做的第一件事,就是询问一位医生或病理学家,以估计死亡时间。依据这个死亡时间的信息,可以推测出许多东西,而在侦探小说中,病理学家的估计被赋予了近乎神秘的崇敬。“死亡时间”是一个基准性事实,是一个不会错的中心点,围绕这个点,侦探反复考虑多少有几分牵强的推测。当然,这种估计也可能有错;这种错可能是略有偏差,也有可能错得很严重。病理学家使用各种各样的时变过程来估计死亡时间:尸体以特定的速率变冷、死后的特定时间会发生僵直反应等等。对于谋杀案的侦探来说,这些都是可使用的相当“粗略”的“时钟”。进化科学家可使用的“时钟”,则可能更精确。(当然,这是相对于所涉及的时间尺度来说的,并不能准确到最接近的小时数!)如果把这两种情况比作“精确的时钟”,那么地质学家掌握的侏罗纪岩石时钟,在精确性和说服力方面要胜过病理学家掌握的尸体变冷的时间过程。

按照进化的标准,人造时钟运行的时间尺度(时、分、秒)是非常短暂的,人造时钟所依赖的时变过程非常快:钟摆的摆动、游丝的转动、晶体的振荡、蜡烛的燃烧、水槽或沙漏的排空、地球的自转(通过日晷显示)。所有的钟表,都利用了某些以固定且已知的速率发生的过程。钟摆以常速摆动,这个速度由它的长度所决定,而不是由摆动的振幅或吊挂物的质量决定(至少理论上是如此)。落地式大摆钟的工作方式是让钟摆连着司行轮,司行轮一步一步地推动齿轮前进;然后,这种转动变挡,以适当的转速来驱动时针、分针和秒针。使用游丝轮的手表,其工作原理与钟表相似。电子表则利用一个类似于钟摆的电子替代物——电池供应能量使某些晶体产生振荡。相比而言,水钟和蜡烛钟很不准确,但是在“计事钟”(event-counting clocks)发明之前,它们还是很有用的。它们不依赖于对任何事物的计数,不像钟摆钟表或电子表那样,而是仅仅测量某一个量。日晷计时是不准确的我是一只日晷表/做事模糊不得了/手表做得远远好。——英国作家希莱尔·贝洛克(Hilaire Belloc)。但是,日晷计时所依赖的地球自转,对于我们称为“日历”的这个“慢速钟表”的尺度来说,则是准确的。这是因为,在这种时间尺度上,钟表(即我们的日历)已经不再是一个测量钟(计数不断变化的太阳高度角的日晷),而是一个计数钟了(计数日/夜的循环数)。

在漫长而缓慢的进化时间轴上,自然界存在的计数钟和测量钟,都可供我们使用。但是为了研究进化,我们不需要像日晷或手表那样的“时钟”来告诉我们目前的时间。我们需要的,是一只可以“清零”的码表。我们需要一只曾在过去的某时刻被清零的“进化时钟”,以便于我们计算从这一刻开始所经过的时间段,从而向我们提供某一物体(如一块岩石)的绝对年龄。在熔化的岩浆固化形成火山岩之际,“放射钟”被清零了,可以很方便地用于确定某些火成岩(火山岩)的年代。

幸运的是,自然界有多种可清零的“自然时钟”可供我们利用。这种多样性是一件好事,因为我们可以利用一些时钟来检查“另一些时钟”的准确性。甚至更为幸运的是,时钟们灵敏地覆盖了范围极其广泛的时间尺度,这正是我们所需要的,因为进化的时间尺度跨越了七八个数量级。有必要说明一下这其中的意义:数量级意味着某种精度。一个数量级的改变就是乘以(或除以)10的变化量,因为我们使用的是十进制这大概是基于我们拥有十指这一进化中的偶然事件。英国科学家弗雷德·霍伊尔(Fred Hoyle)曾巧妙地推测说,若我们生来有八个手指,我们可能会发明八进制而不是十进制,这样也许我们会早100年发明二进制,进而发明电脑(因为8是2的幂)。,所以,一个数字的数量级就是在小数点前面或者后面的0的个数。例如8个数量级构成了“1亿”。钟表秒针的速度是分针的60倍,是时针的720倍,所以这3个指针覆盖的数量级小于3个。和跨越8个数量级的所有“地质时钟”相比,我们的时钟是微不足道的。短时段的“放射性衰变时钟”也是存在的,甚至可以精确到几分之一秒。但是研究进化的时候,精确到“百年”或者“十年”的时钟,就大约是我们需要的最快的时钟了。在这类自然“时钟”的范围内,快的一端(树木年轮和碳测定年代)用于考古的目的是很实用的,也可用于测定狗或白菜的驯化时间这类事件所涉及的样品。在另一端,我们需要可以测量数亿年,甚至数十亿年的“自然时钟”。谢天谢地,大自然为我们提供了一系列我们所需要的“时钟”。更棒的是,它们的灵敏度范围部分地互相重叠,所以我们可以利用它们进行互相校正。

树的年轮

树木年轮这种“时钟”,能够以惊人的准确度追溯一块木头(如都铎王朝古建筑中的一根横梁)的年龄,事实上,它几乎可以精确到年。其计时原理如下:首先,正如大多数人所知,在假定最外圈代表“现在”的情况下,你可以通过数出树干中的圈,算出刚被砍倒的一棵树的年龄。那些圈表明了树在一年的不同季节不同的生长情况——夏天或冬天、旱季或雨季;在高纬度的地方,这种表现更是特别显著,这是因为高纬度地区四季特别分明。幸好,你不必为了测定树龄而真的去砍倒一棵树。我们通过向树心钻孔并取出木芯样品,就可以“管窥”它的年轮,而无需砍倒它。但是,仅仅通过数年轮并不会告诉你,房梁到底存活于哪一个世纪,或维京海盗的长船桅杆的生长年份。如果你真想确定一块已死亡很久的老木头的精确生长日期,你需要更精明一点——不仅要数年轮,还要观察那些宽窄不一的年轮的形状。

这些年轮的存在显示了富足生长或贫乏生长的季节循环,同样,一些年份也会好于另一些年份,因为每一年的天气都不相同:干旱阻碍生长,丰年加速生长;有冷年,有热年,甚至有些年份会发生反常的厄尔尼诺现象或喀拉喀托火山浩劫。就树木来说,丰年生的年轮会宽于荒年生的年轮。在任何一个地区,由丰年和荒年造成了特殊的标志性序列——宽宽窄窄的年轮模式,足以像指纹一样,表征年轮生长的确切年份,可以把树木彼此区别开。

树木年代学家计算近代树木的年轮,每圈年轮的确切时间都可以通过这棵树已知的被砍伐的时间数回去,从这些度量中,他们建立了一个年轮模式的参照系列,你可以用这个参照系列,比对你想知道的考古学家提供的木头样本的年轮,从而追溯木头样本的时间。所以,你可能会得到这样的报告:这根都铎王朝古建筑的梁木有一系列典型的年轮标记,可以匹配年轮参照系中的某一个系列,我们已知这个参照系列年份大约在公元1541—1547年间,因此,这幢房子应该是建于公元1547年之后。

好倒是好,但是,都铎王朝时期的树木很少有存活至今的,遑论石器时代或更早时代的树木。有些树,如狐尾松(bristlecone pine)和一些巨型红杉,能活几千年;但大部分树在还没有活过百年的时候,就被砍掉用作木材了。那么,我们要怎么做,才能建立一个更古老的树木年轮参照系呢?我猜你已经知道答案了——这就是重叠追溯法。一根牢固的绳子可能长约100码(1码=3英尺),然而其中的单缕纤维还达不到绳子全长的十分之几;为了在树木年代学中使用重叠原则,要使用年代已知的现代树的纹路形状作参照。你从现代树的老年轮中分辨出一个纹路,再从死去较久的树的晚近年轮中寻找出相同的纹路,然后你在这些死去较久的树中寻找纹路,再从甚至更老的树的晚近年轮中寻找相同的纹路,依此类推。理论上,对于上百万年前的石化森林,你可以采用“菊花链(daisychain)方式”追溯回去。而树木年代学更让人诧异的是,至少在理论上,你可以精确到最接近的年份,哪怕是对于1亿年前的石化森林。你可以直接地说出,这块侏罗纪化石树木的这圈年轮,形状恰恰符合比它晚257年的另一棵侏罗纪树木的某一圈年轮,形状是一样的!只要有足够的石化森林,能以“菊花链方式”持续地从现在追溯回去,你就可以不仅说出这棵树存活在晚侏罗世,而且说出它存活的确切时间是公元前151432657年!(图10)不幸的是,我们并没有这样一个完整无缺的链条,实际上,树木年代学只能把我们带回到11500年前。无论如何,这仍是一个令人兴奋的想法——只要我们能发现足够多的石化森林,在数千万年的跨度中,我们确实可以追溯到最接近的年份。

图10 树木年代学的工作原理

树木的年轮并不是承诺可以完全达到“最接近的年份”这种精度的唯一的系统。“纹泥”(varves)是冰川湖沉淀下来的沉积物层,它们像年轮一样,也会年复一年地随季节而变化,因此,理论上,同样的原理也适用于纹泥,相应地也有同等的精确度。珊瑚礁像树木一样,也有年度生长轮,有趣的是,这些可以用于侦测古代地震的日期。顺便说一下,树木年轮也能告诉我们地震的日期。可以为我们所用的大多数溯年系统(包括在数千万年、数亿年和数十亿年范围使用的所有“放射性时钟”),其精确度的误差范围是大致和相关的时间尺度成比例的。