- 初中数学常规竞赛题典(几何)
- 彭林
- 1822字
- 2024-11-28 19:30:58
第三单元 相交线与平行线
夯实基础
1.经过任意三点中的两点共可以画出的直线条数是( ).
A.一条或三条
B.三条
C.两条
D.一条
2.如图,直线a、b相交于点O,若∠1等于40°,则∠2等于( ).
第2题图
A.50°
B.60°
C.140°
D.160°
3.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,若∠FEB=110°,则∠EFD等于( ).
第3题图
A.50°
B.60°
C.70°
D.110°
4.如图所示,∠1=∠2,则下列结论一定成立的是( ).
第4题图
A.AB∥CD
B.A D∥BC
C.∠B=∠D
D.∠3=∠4
5.已知点P在直线l外,点A、B、C均在直线l上,PA=4c m,PB=5c m,PC=2c m,则点P到直线l的距离为( ).
A.2cm
B.小于2cm
C.不大于2cm
D.以上答案均不对
6.跳远测试中,小强在沙坑里落地的脚印(阴影部分)如图所示.E是起跳踏板的中点,A、C分别是过F、D向起跳线所作垂线的垂足.小强的跳远成绩是线段( ).
第6题图
A.AF的长
B.CD的长
C.ED的长
D.EB的长
7.如图,已知AB∥CD,若∠1=50°,则∠BAC=________度.
第7题图
8.如图所示,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=________度.
第8题图
9.如图所示,如果想要把河中的水引到水池C中,可过点C作AB的垂线段CD,然后沿CD开渠,则能使所开的渠最短,这种设计的理论依据是________.
第9题图
10.如图所示,直线AB和CE相交于点D,且∠1+∠E=180°,你认为直线AB与EF平行吗?说明理由.
第10题图
拓展提高
1.如图所示,AB∥CD,下列结论中正确的是( ).
第1题图
A.∠1+∠2+∠3=180°
B.∠1+∠2+∠3=360°
C.∠1+∠3=2∠2
D.∠1+∠3=∠2
2.如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为( ).
第2题图
A.120°
B.100°
C.140°
D.90°
3.如图所示,D H∥EG∥BC,且DC∥EF,那么图中与∠1相等的角(不包括∠1)的个数是( ).
第3题图
A.2个
B.4个
C.5个
D.6个
4.如图所示,已知a∥b∥c,直线d与a、b、c均相交,若∠2=75,∠3=140°,则∠1=________度.
第4题图
5.如图所示,直线l 1∥l 2,AB⊥l 1,垂足为点O,BC与l 2 相交于点E,∠1=43°,则∠2=________.
第5题图
6.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为________.
第6题图
7.如图所示,已知OA⊥OB,OC⊥OD,∠AOC∶∠BOD=1∶2,则∠BOD=_________.
第7题图
8.如图所示,l1∥l2,试探索图中三个角∠α、∠β、∠γ的数量关系.
第8题图
冲刺竞赛
1.如图所示,已知AB∥CD,则∠B+∠E+∠D=________.
第1题图
2.如图所示,已知FD∥BE,则∠1+∠2-∠3=________.
第2题图
3.如图所示,已知BI、CI是∠ABC和∠ACB的三等分线,EF过点I且平行于BC,分别交AB、AC于E、F,∠ABC+∠ACB=111°,则∠BIC=________.
第3题图
4.如图所示,AE∥BD,∠1=4∠2,∠2=23°,则∠C=_________.
第4题图
5.如图所示,已知AB∥CD,∠AMP=150°,∠PND=60°,则∠P=_________.
第5题图
6.如图所示,直线BC∥DE,AD⊥DF,∠α=30°,∠β=50°,则∠A=________.
第6题图
7.如图所示,在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF,求证:∠AGD=∠ACB.
第7题图
8.如图所示,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+∠2=90°,求证:BC⊥AB.
第8题图
9.如图所示,已知∠2=∠B,ED∥AC,求证:∠A=∠1.
第9题图
10.(1)如图1所示,MA 1∥NA 2,则∠A 1+∠A 2=________度.
如图2所示,MA1∥NA3,则∠A1+∠A2+∠A3=________度.
如图3所示,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=________度.
第10题图
如图4所示,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=________度.
从上述结论中我们发现,如图5所示,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=________度.
(2)如图1所示,AA1∥BA2,则∠A1,∠A2,∠B1之间的关系为________;
如图2所示,AA1∥BA3,则∠A1,∠A2,∠A3,∠B1,∠B2之间的关系为________;
如图3所示,AA1∥BAn,则∠A1,∠A2,∠A3,…,∠An,∠B1,∠B2,…,Bn-1之间的关系为________.
第10题图
11.已知,如图所示,AB∥CD,∠1=∠2,∠3=∠4.
求证:EK⊥FK.
第11题图
12.已知,如图所示,AB∥CD,∠ABF=∠DCE,求证:∠BFE=∠FEC.
第12题图
13.如图所示,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α.
第13题图
14.已知,如图所示,CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.
第14题图
15.如图所示,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,联结PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角.)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
(3)当动点P落在第③部分时,全面探究∠PAC、∠APB、∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
第15题图
数学娱乐
谁最吝啬
“你说,世界上谁最吝啬?”
“当然是数学家.”
“为什么?”
“他们是毫厘必争呀!”