Therefore to the question whether it is possible to pass through an infinite number of units either of time or of distance we must reply that in a sense it is and in a sense it is not. If the units are actual, it is not possible: if they are potential, it is possible. For in the course of a continuous motion the traveller has traversed an infinite number of units in an accidental sense but not in an unqualified sense: for though it is an accidental characteristic of the distance to be an infinite number of half-distances, this is not its real and essential character. It is also plain that unless we hold that the point of time that divides earlier from later always belongs only to the later so far as the thing is concerned, we shall be involved in the consequence that the same thing is at the same moment existent and not existent, and that a thing is not existent at the moment when it has become. It is true that the point is common to both times, the earlier as well as the later, and that, while numerically one and the same, it is theoretically not so, being the finishing-point of the one and the starting-point of the other: but so far as the thing is concerned it belongs to the later stage of what happens to it. Let us suppose a time ABG and a thing D, D being white in the time A and not-white in the time B. Then D is at the moment G white and not-white: for if we were right in saying that it is white during the whole time A, it is true to call it white at any moment of A, and not-white in B, and G is in both A and B. We must not allow, therefore, that it is white in the whole of A, but must say that it is so in all of it except the last moment G. G belongs already to the later period, and if in the whole of A not-white was in process of becoming and white of perishing, at G the process is complete. And so G is the first moment at which it is true to call the thing white or not white respectively. Otherwise a thing may be non-existent at the moment when it has become and existent at the moment when it has perished: or else it must be possible for a thing at the same time to be white and not white and in fact to be existent and non-existent. Further, if anything that exists after having been previously non-existent must become existent and does not exist when it is becoming, time cannot be divisible into time-atoms. For suppose that D was becoming white in the time A and that at another time B, a time-atom consecutive with the last atom of A, D has already become white and so is white at that moment: then, inasmuch as in the time A it was becoming white and so was not white and at the moment B it is white, there must have been a becoming between A and B and therefore also a time in which the becoming took place. On the other hand, those who deny atoms of time (as we do) are not affected by this argument: according to them D has become and so is white at the last point of the actual time in which it was becoming white: and this point has no other point consecutive with or in succession to it, whereas time-atoms are conceived as successive. Moreover it is clear that if D was becoming white in the whole time A, the time occupied by it in having become white in addition to having been in process of becoming white is no more than all that it occupied in the mere process of becoming white.
These and such-like, then, are the arguments for our conclusion that derive cogency from the fact that they have a special bearing on the point at issue. If we look at the question from the point of view of general theory, the same result would also appear to be indicated by the following arguments. Everything whose motion is continuous must, on arriving at any point in the course of its locomotion, have been previously also in process of locomotion to that point, if it is not forced out of its path by anything: e.g. on arriving at B a thing must also have been in process of locomotion to B, and that not merely when it was near to B, but from the moment of its starting on its course, since there can be, no reason for its being so at any particular stage rather than at an earlier one. So, too, in the case of the other kinds of motion. Now we are to suppose that a thing proceeds in locomotion from A to G and that at the moment of its arrival at G the continuity of its motion is unbroken and will remain so until it has arrived back at A. Then when it is undergoing locomotion from A to G it is at the same time undergoing also its locomotion to A from G: consequently it is simultaneously undergoing two contrary motions, since the two motions that follow the same straight line are contrary to each other. With this consequence there also follows another: we have a thing that is in process of change from a position in which it has not yet been: so, inasmuch as this is impossible, the thing must come to a stand at G. Therefore the motion is not a single motion, since motion that is interrupted by stationariness is not single.