第144章
- Darwin and Modern Science
- 佚名
- 880字
- 2016-03-02 16:28:43
Gravitation can only indirectly affect life-phenomena; namely, when we have in a cell two different non-miscible liquids (or a liquid and a solid) of different specific gravity, so that a change in the position of the cell or the organ may give results which can be traced to a change in the position of the two substances. This is very nicely illustrated by the frog's egg, which has two layers of very viscous protoplasm one of which is black and one white. The dark one occupies normally the upper position in the egg and may therefore be assumed to possess a smaller specific gravity than the white substance. When the egg is turned with the white pole upwards a tendency of the white protoplasm to flow down again manifests itself. It is, however, possible to prevent or retard this rotation of the highly viscous protoplasm, by compressing the eggs between horizontal glass plates. Such compression experiments may lead to rather interesting results, as O. Schultze first pointed out. Pflueger had already shown that the first plane of division in a fertilised frog's egg is vertical and Roux established the fact that the first plane of division is identical with the plane of symmetry of the later embryo. Schultze found that if the frog's egg is turned upside down at the time of its first division and kept in this abnormal position, through compression between two glass plates for about 20 hours, a small number of eggs may give rise to twins. It is possible, in this case, that the tendency of the black part of the egg to rotate upwards along the surface of the egg leads to a separation of its first cells, such a separation leading to the formation of twins.
T.H. Morgan made an interesting additional observation. He destroyed one half of the egg after the first segmentation and found that the half which remained alive gave rise to only one half of an embryo, thus confirming an older observation of Roux. When, however, Morgan put the egg upside down after the destruction of one of the first two cells, and compressed the eggs between two glass plates, the surviving half of the egg gave rise to a perfect embryo of half size (and not to a half embryo of normal size as before.) Obviously in this case the tendency of the protoplasm to flow back to its normal position was partially successful and led to a partial or complete separation of the living from the dead half; whereby the former was enabled to form a whole embryo, which, of course, possessed only half the size of an embryo originating from a whole egg.
(b) EXPERIMENTS ON HYDROIDS.
A striking influence of gravitation can be observed in a hydroid, Antennularia antennina, from the bay of Naples. This hydroid consists of a long straight main stem which grows vertically upwards and which has at regular intervals very fine and short bristle-like lateral branches, on the upper side of which the polyps grow. The main stem is negatively geotropic, i.e. its apex continues to grow vertically upwards when we put it obliquely into the aquarium, while the roots grow vertically downwards.
The writer observed that when the stem is put horizontally into the water the short lateral branches on the lower side give rise to an altogether different kind of organ, namely, to roots, and these roots grow indefinitely in length and attach themselves to solid bodies; while if the stem had remained in its normal position no further growth would have occurred in the lateral branches. From the upper side of the horizontal stem new stems grow out, mostly directly from the original stem, occasionally also from the short lateral branches. It is thus possible to force upon this hydroid an arrangement of organs which is altogether different from the hereditary arrangement. The writer had called the change in the hereditary arrangement of organs or the transformation of organs by external forces HETEROMORPHOSIS. We cannot now go any further into this subject, which should, however, prove of interest in relation to the problem of heredity.
If it is correct to apply inferences drawn from the observation on the frog's egg to the behaviour of Antennularia, one might conclude that the cells of Antennularia also contain non-miscible substances of different specific gravity, and that wherever the specifically lighter substance comes in contact with the sea-water (or gets near the surface of the cell)the growth of a stem is favoured; while contact with the sea-water of the specifically heavier of the substances, will favour the formation of roots.
VI. THE EXPERIMENTAL CONTROL OF ANIMAL INSTINCTS.
(a) EXPERIMENTS ON THE MECHANISM OF HELIOTROPIC REACTIONS IN ANIMALS.
Since the instinctive reactions of animals are as hereditary as their morphological character, a discussion of experiments on the physico-chemical character of the instinctive reactions of animals should not be entirely omitted from this sketch. It is obvious that such experiments must begin with the simplest type of instincts, if they are expected to lead to any results; and it is also obvious that only such animals must be selected for this purpose, the reactions of which are not complicated by associative memory, or, as it may preferably be termed, associative hysteresis.