1.7 电磁场的角动量与光子的自旋[6],[17]
1.7.1 费曼佯谬
著名物理学家费曼(Richard P. Feynman)提出过一个佯谬。假设建立一套实验装置,如图1.7-1所示。将一个薄而圆的塑料盘装在一根两端高度润滑的竖直轴上,该盘可以自由转动。在盘上与转轴同心地放置一个短螺线管。由一个装在盘上的电池给这个螺线管提供稳恒电流。在盘的边缘彼此等距地放置若干个小金属球,它们之间及与螺线管之间相互绝缘。每个金属球带有等量的电荷。如果螺线管中的电流突然中断,螺线管周围磁通量的变化必然产生感生电场。这个感生电场的电场线是以轴为圆心的一系列同心圆,金属小球受到该电场力的作用,将使圆盘系统对轴产生力矩,从而导致圆盘转动。但根据力学中的角动量守恒定律,原来圆盘及一切附件静止,角动量为零,因此当电流切断时,圆盘不应转动。那么圆盘究竟是转动还是不转动呢?要回答这个问题,需要对电磁场的角动量进行分析。实际上,完全类似于前面对电磁场动量的讨论,本例中电荷、电流及圆盘系统的机械角动量与电磁场角动量之和是守恒的。但电荷、电流及圆盘系统的机械角动量不守恒。当圆盘静止时,导电线圈与带电小球形成的静电场与静磁场在空间中构成一个电磁环流S,从而具有电磁角动量。当电流终止后,电磁环流S消失,电磁角动量转换为圆盘系统的机械角动量,而系统的总角动量守恒。
图1.7-1 费曼圆盘佯谬示意图
1.7.2 电磁场的角动量
为讨论电磁场的角动量,先考虑电磁场作用于带电体的力矩。根据洛伦兹力公式
可将力矩表示为
设在体积V中,带电体的机械角动量为Lm,角动量的时间变化率等于作用在该体系上的合力矩,于是有
利用式(1.6-1)及式(1.6-10)得到
上式还可以写成
利用高斯定理将上式化为
分别定义电磁场的角动量密度l和角动量流密度张量Λ为
在体积V中,电磁场的角动量Lem为
从体积V表面Σ流出的电磁场的角动量为
于是,将式(1.7-5)写为
上式左边为在体积V中单位时间内,带电体的机械角动量Lm 与电磁场的角动量Lem的总和的增加量,右边为单位时间内从体积V表面Σ流入的电磁场的角动量。式(1.7-10)是电磁体系角动量守恒的数学表述。
1.7.3 光子的自旋
上面已经给出电磁场的角动量密度为
l=r×g
在真空中,电磁场的角动量为
在电动力学中,磁感应强度矢量B常表示为矢量势A的旋度,即
于是,将式(1.7-11)写成
式中
于是有
由矢量运算的关系式
其中εijk是三阶反对称单位张量,其值如下
这样可得
在无源空间区域中,j=0,ρ=0,因此
于是有
利用
与
将系统总电磁角动量表示为
利用高斯定理,将第二项写成面积分形式。我们所考虑的体系具有有限空间,当积分范围足够大时,区域外面的场为零,因此第二项积分为零。于是有
上式即光子角动量表达式,由两部分组成,第一项相当于光子的轨道角动量,其中r×▽与量子论中的角动量算符对应。第二项相当于光子的自旋角动量,定义为
由于B=▽×A,▽×E=,对于真空中的电磁波有
即
对于圆偏振光,E和A互相垂直,因此
而电磁场的总能量为
总能量U与的关系为
根据量子理论,电磁场能量是量子化的,对单个光子有
式中,h为普朗克常数,因此
这表明光子的自旋为1。