
会员
通用人工智能:初心与未来
更新时间:2023-10-27 19:32:06 最新章节:封底
书籍简介
至少从20世纪50年代起,人们就开始大肆宣传可能很快就会创造出一种能够与人类智能的全部范围和水平相匹配的机器。现在,我们已经成功地创造出了能够解决特定问题的机器,其准确度达到甚至超过了人类,但我们仍然无法获得通用智能。这本书想和大家探讨一下还需要做什么样的努力才能不仅获得专用智能,还能获得通用智能。如果读者对智能感兴趣,想了解更多关于如何建造自主机器的知识,或者担心这些机器突然有一天会以一种被称为“技术奇点”的方式统治世界,请阅读本书。通过阅读本书,读者将会了解到:尽管人工智能已经变得越来越复杂而强大,但计算机科学还远未创造出通用人工智能。人类自然智能的认知机理以及人工智能发展的初心与使命,从不同方面认知当前人工智能技术的不足。从当前“专用人工智能”到实现真正的“通用人工智能”还需要在哪些方面取得突破。机器智能的进步可能会改变人们从事的工作类型,但它们不会意味着人类存在的终结。为什么机器智能的改进并不会导致由机器所主导的失控性革命,机器智能的进步并不会导致世界末日的到来。
品牌:机械工业出版社
译者:郭斌
上架时间:2023-03-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)赫伯特·L.罗埃布莱特
最新上架
- 会员本书通过对10款人工智能应用的介绍及调试,帮助读者快速掌握人工智能辅助文案变现的方式。本书共10章,分别讲解AI智能创作,AI爆款文案写作工具,人工智能辅助泛流量文案、泛商业文案、私域文案创作,利用人工智能实现文案变现的底层逻辑,以及在今日头条、百家号、小红书、知乎等平台及不同展示形式下进行文案创作的实战案例等。计算机12.2万字
- 会员本书介绍提示工程的基本概念和实践,旨在帮助读者了解如何构建高质量的提示内容。内容包括:认识大语言模型、ChatGPT应用体验、ChatGPTAPI、PythonChatGPTAPI库、提示工程、提示类型、基于提示工程应用Python数据分析等。计算机14万字
- 会员本书以第一人称视角,讲述AI的来龙去脉,表达AI的技术原理。从历史到未来,跨越百年时空;从理论到实践,解读AI大爆炸;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。ChatGPT的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及大模型、深度神经网络、Transformer、AIGC、涌现效应等一系列技术前沿。计算机8.6万字
- 会员这是一本全方位讲解如何利用AI工具为HR赋能的著作,是AI时代HR提升职场竞争力的实战指南。作者基于深厚的HR管理经验和AI实战经验,通过科学的方法、高效的提示词、丰富的案例、清晰的步骤,细致地讲解了如何利用AI工具提高工作效率、优化管理流程、提升人才管理水平。从AIGC的基础知识到AI工具的使用,从AI在人力资源全生命周期所有场景中的应用到使用AI的风险防控,本书全面系统地讲解了HR需要掌握的全计算机20.6万字
- 会员本书强调“把AI作为方法”(AI即ArtifcialIntelligence,人工智能)这一核心理念,旨在引导读者掌握与AI对话的关键技巧,并将AI融入工作和生活真正体验AI带给人类的高效与便捷。本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了AI的强大魅力,通过一系列“召唤术”帮助读者运用AI创造性地计算机9.7万字
- 会员本书共十一章,主要包含四部分:第1章解读ChatGPT的基础原理和提示工程的基本概念;第2至5章介绍提示工程技巧,涵盖有效提示编写、针对复杂任务的提示设计技巧、对话中的提示设计技巧,以及提示的优化与迭代;第6章主要介绍当前ChatGPT推出的进阶功能;第7至11章结合教育领域、市场营销、新媒体运营、软件开发和数据分析实战展示提示工程技巧的应用。计算机12.9万字
- 会员本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。计算机23.6万字
同类书籍最近更新
- 会员本书的副书名指出知识工程2.0是智能制造时代的研发智慧,书中的讨论对象和举例均以研发企业或研发过程为背景。但这只是因为研发过程是知识最密集、产出最丰富和应用最深入的过程,并不代表本书所提的方法不适用于非研发型企业。非研发型企业或非研发过程的知识工程方法是本书所提方法的子集,大部分方法进行适应性改造,即可适用于这些企业或过程。人工智能13.9万字
- 会员本书视角独特,将软件工程中的方法应用到机器学习实践中,重视方法论和工程实践的融合。本书主要有3个特点。1)机器学习的软件工程方法:用软件工程(SoftwareEngineering)中的工具、方法和理论指导机器学习的实践活动。主要体现在测试驱动开发(TDD)方法、机器学习项目管理方法、工程化软件应用于数据科学标准化环境,以及开源算法包的大量实践应用案例等。2)机器学习全生命周期:书中全面呈现了机人工智能22.4万字