数据库系统原理及应用教程(第4版)在线阅读
会员

数据库系统原理及应用教程(第4版)

刘瑞新等
开会员,本书免费读 >

计算机网络数据库21.7万字

更新时间:2020-05-28 17:16:35 最新章节:参考文献

立即阅读
加书架
下载
听书

书籍简介

本书为“十二五”普通高等教育本科规划教材。本书系统全面地阐述了数据库系统的基本理论、技术和方法,具有概念清楚、重点突出、章节安排合理,重视上机实验环节等特点。书中以流行的SQLServer2008数据库管理系统为技术案例和实验平台,具有较好的可操作性。书中每章附有丰富习题。为便于组织教学和实验,本书的后一章为数据库课程的教学标准、实验标准和实验方案,供读者参考。
品牌:机械工业出版社
上架时间:2019-07-30 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

刘瑞新等
主页

最新上架

  • 会员
    本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。
    袁昕编著计算机8.5万字
  • 会员
    本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预
    翟世臣 张良均主编计算机13.6万字
  • 会员
    本书共8章,第1章介绍新媒体数据分析的基础知识;第2章介绍各种新媒体数据分析指标;第3章介绍新媒体数据的采集;第4章介绍新媒体数据处理;第5章介绍新媒体数据分析的思维和方法;第6章介绍新媒体数据可视化;第7章介绍不同新媒体平台的数据分析方法和实战技能;第8章介绍新媒体数据分析报告的制作。
    赵春红计算机9.2万字
  • 会员
    《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员
    刘伟计算机0字
  • 会员
    本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云
    戴经国 何丰 王国滨 郭炳宇 姜善永计算机12.1万字
  • 会员
    本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。
    熊熙 张雪莲编著计算机10.9万字
  • 会员
    本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使
    凤凰高新教育编著计算机0字
  • 会员
    数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。
    丁兆云 沈大勇 徐伟 周鋆计算机4.7万字
  • 会员
    本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth
    王俊主编计算机12.3万字

同类书籍最近更新

  • 会员
    本书讲述在流行的大数据分布式存储和计算平台Hadoop上设计实现数据仓库,将传统数据仓库建模与SQL开发的简单性与大数据技术相结合,快速、高效地建立可扩展的数据仓库及其应用系统。本书内容包括数据仓库、Hadoop及其生态圈的相关概念,使用Sqoop从关系数据库全量或增量抽取数据,使用HIVE进行数据转换和装载处理,使用Oozie调度作业周期性执行,使用Impala进行快速联机数据分析,使用Hue
    王雪迎数据库22.2万字