人人都该懂的人工智能在线阅读

人人都该懂的人工智能

(英)布莱·惠特比
开会员,本书8折购 >

计算机网络人工智能8.1万字

更新时间:2019-04-17 09:47:20 最新章节:延伸阅读

立即阅读
加书架
下载
听书

书籍简介

《人人都该懂的人工智能》从人工智能领域的发展史、存在的普遍争议和误区、人工智能的应用、人工智能与其他学科的关系、人工智能面临的挑战和未来、人工智能的社会影响等角度切入,以通俗易懂的案例带领读者迅速了解人工智能领域,开启一段人工智能之旅。《人人都该懂的人工智能》属于湛庐文化重磅推出的“新核心素养”系列图书之一。本系列图书致力于推广通识阅读,扩展读者的阅读面,培养批判性思考的能力,涵盖了哲学、心理学、法律、艺术、物理学、生物科技等诸多人文科学和自然科学的知识,其中《人人都该懂的人工智能》介绍了人工智能领域的核心思想,让你一本书了解人工智能的核心智慧。
译者:郭雪
上架时间:2019-03-01 00:00:00
出版社:浙江人民出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

最新上架

  • 会员
    本书是一本深入探讨AI在论文写作中应用的指南。本书通过九章内容,全面介绍如何在论文选题、前言写作、大纲写作、正文写作、数据分析、摘要写作、结语撰写、文稿翻译与润色、答辩PPT制作、查重投稿等环节借助AI提高效率和质量。本书不仅讨论了AI的使用伦理,还针对论文写作的具体问题,提供了提示词示例(已全部收录到秋叶AI智能鼠标平台),为论文写作提供了广阔的视角和新的方法。本书可作为缺少学术论文写作经验的大
    秋叶 佘有缘计算机7.3万字
  • 会员
    本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。
    段小手计算机23.6万字
  • 自人工智能(AI)的概念诞生之日起,科学家们就热衷于探讨它的发展路径。第一阶段毫无疑问是计算智能,经过半个多世纪,AI在运算能力和记忆方面早已超越人类。第二阶段,是感知智能,让机器可以看得懂听得懂这个世界。科学界认为,尚未到来的第三阶段,是认知智能,甚至提到一个词:认知时代。我们来到大模型时代或者是生成式人工智能时代了吗?如果我们此时此刻正身处这个时代,那上一个是什么时代?有人说,大规模预训练已经
    刘云浩计算机11.3万字
  • 会员
    本书将带你深入探索AI“神器”——DeepSeek的无限潜能,带你从零开始,轻松掌握AI的核心应用。通过学习本书,你将轻松上手DeepSeek,开启智能生活新篇章;通过学习本书,你将学会用DeepSeek大幅提升工作效率;通过学习本书,你将学会如何让DeepSeek成为你的职场超级助手;通过学习本书,你将学会如何利用DeepSeek激发自己的创作灵感,打造爆款内容和个人品牌;通过学习本书,你将学会
    秋叶 任泽岩 黄震炜计算机7.2万字
  • 会员
    随着ChatGPT等人工智能和语言模型不断进步,了解这些技术的含义和潜在陷阱比以往任何时候都更加重要。作为享誉全球的跨技术和设计学科思想家,前田约翰利用他的丰富经验,为企业、产品设计师和决策者提供了可行的指导。通过深思熟虑和偶尔异想天开的例子,他构造了一个可以描述任何机器学习系统的关键功能的框架,并展望了可以如何使用它们来创造富有包容性和改变世界的产品。对任何想要深入了解机器如何“思考”以及未来可
    (美)前田约翰计算机9.6万字
  • 本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你
    程戈计算机13.7万字
  • 会员
    本书全面、系统地探讨科学计算的背景、机器学习的重要性以及昇思MindSpore框架在科学计算中的广泛应用。科学计算作为一门交叉学科,融合了数学、计算机科学与技术等领域的专业知识,在现代科学研究和工程实践中起着关键作用。本书以MindSpore为平台,深入研究这一全场景AI框架在科学计算中的探索与实践,通过对基础理论、行业应用和实际案例的详细介绍,为读者提供全方位的学习和参考资料。全书共8章,首先详
    陈雷编著计算机15.7万字
  • 会员
    本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle
    刘润森计算机0字
  • 会员
    本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专
    肖睿 程鸣萱编著计算机11万字